We present a device concept based on cascaded electro-optic deflection in a domain microengineered ferroelectric chip. In our design, large deflection angles are achieved by cascading several smaller scanners in a single ferroelectric chip, such that each successive scanner stage builds upon the deflection of the previous stage. We demonstrate the basic concept using a two-stage device fabricated in a single crystal wafer of ferroelectric LiTaO3. By operating the device using a specially designed programmable multichannel driver that provides ±1.1 kV per stage, a total scan angle of 25.4° at 5 kHz was demonstrated. Even larger angles of deflection are possible with additional scanner stages.
The experimental optical interconnection module of the Free-Space Accelerator for Switching Terabit Networks (FAST-Net) project is described and characterized. Four two-dimensional (2-D) arrays of monolithically integrated vertical-cavity surface-emitting lasers (VCSEL's) and photodetectors (PD's) were designed, fabricated, and incorporated into a folded optical system that links a 10 cm x 10 cm multichip smart pixel plane to itself in a global point-to-point pattern. The optical system effects a fully connected network in which each chip is connected to all others with a multichannel bidirectional data path. VCSEL's and detectors are arranged in clusters on the chips with an interelement spacing of 140 microm. Calculations based on measurements of resolution and registration tolerances showed that the square 50-microm detector in a typical interchip link captures approximately 85% of incident light from its associated VCSEL. The measured optical transmission efficiency was 38%, with the losses primarily due to reflections at the surfaces of the multielement lenses, which were not antireflection coated for the VCSEL wavelength. The overall efficiency for this demonstration is therefore 32%. With the measured optical confinement, an optical system that is optimized for transmission at the VCSEL wavelength will achieve an overall efficiency of greater than 80%. These results suggest that, as high-density VCSEL-based smart pixel technology matures, the FAST-Net optical interconnection concept will provide a low-loss, compact, global interconnection approach for high bisection-bandwidth multiprocessor applications in switching, signal processing, and image processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.