Environment Canada recently developed a coupled lake–atmosphere–hydrological modelling system for the Laurentian Great Lakes. This modelling system consists of the Canadian Regional Deterministic Prediction System (RDPS), which is based on the Global Environmental Multiscale model (GEM), the MESH (Modélisation Environnementale Surface et Hydrologie) surface and river routing model, and a hydrodynamic model based on the three-dimensional global ocean model Nucleus for European Modelling of the Ocean (NEMO). This paper describes the performance of the NEMO model in the Great Lakes. The model was run from 2004 to 2009 with atmospheric forcing from GEM and river forcing from the MESH modelling system for the Great Lakes region and compared with available observations in selected lakes. The NEMO model is able to produce observed variations of lake levels, ice concentrations, lake surface temperatures, surface currents and vertical thermal structure reasonably well in most of the Great Lakes. However, the model produced a diffused thermocline in the central basin of Lake Erie. The model predicted evaporation is relatively strong in the upper lakes. Preliminary results of the modelling system indicate that the model needs further improvements in atmospheric–lake exchange bulk formulae and surface mixed layer physics.
Coastal flooding induced by storm surges associated with tropical cyclones is one of the greatest natural hazards sometimes even surpassing earthquakes. Although the frequency of tropical cyclones in the Indian seas is not high, the coastal region of India, Bangladesh and Myanmar suffer most in terms of life and property caused by the surges. Therefore, a locationspecific storm surge prediction model for the coastal regions of Myanmar has been developed to carry out simulations of the 1975 Pathein, 1982 Gwa, 1992 Sandoway and 1994 Sittwe cyclones. The analysis area of the model covers from 8°N to 23°N and 90°E to 100°E. A uniform grid distance of about 9 km is taken along latitudinal and longitudinal directions. The coastal boundaries in the model are represented by orthogonal straight line segments. Using this model, numerical experiments are performed to simulate the storm surge heights associated with past severe cyclonic storms which struck the coastal regions of Myanmar. The model results are in agreement with the limited available surge estimates and observations.
A review of the present status of the global warming science is presented in this paper. The term global warming is now popularly used to refer to the recent reported increase in the mean surface temperature of the earth; this increase being attributed to increasing human activity and in particular to the increased concentration of greenhouse gases (carbon dioxide, methane and nitrous oxide) in the atmosphere. Since the mid to late 1980s there has been an intense and often emotional debate on this topic. The various climate change reports (1996, 2001) prepared by the IPCC (Intergovernmental Panel on Climate Change), have provided the scientific framework that ultimately led to the Kyoto protocol on the reduction of greenhouse gas emissions (particularly carbon dioxide) due to the burning of fossil fuels. Numerous peer-reviewed studies reported in recent literature have attempted to verify several of the projections on climate change that have been detailed by the IPCC reports.The global warming debate as presented by the media usually focuses on the increasing mean temperature of the earth, associated extreme weather events and future climate projections of increasing frequency of extreme weather events worldwide. In reality, the climate change issue is considerably more complex than an increase in the earth's mean temperature and in extreme weather events. Several recent studies have questioned many of the projections of climate change made by the IPCC reports and at present there is an emerging dissenting view of the global warming science which is at odds with the IPCC view of the cause and consequence of global warming. Our review suggests that the dissenting view offered by the skeptics or opponents of global warming appears substantially more credible than the supporting view put forth by the proponents of global warming. Further, the projections of future climate change over the next fifty to one hundred years is based on insufficiently verified climate models and are therefore not considered reliable at this point in time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.