For many years, CMOS process scaling has allowed a steady increase in the operating frequency and integration density of integrated circuits. Only recently, however, have we reached a point where it takes several clock cycles for global signals to traverse a complex digital system such as a modern microprocessor. Thus, interconnect latency must be taken into account in current and future design tools at the architectural as well as synthesis level. To this purpose, this work proposes a new latencyaware technique for the performance-driven concurrent insertion of flipflops and repeaters in VLSI circuits. Overwhelming evidence showing an exponential increase in the number of pipelined interconnects with process scaling, for high-performance microprocessors as well as highend ASICs, is also presented. This increase indicates a radical change in current design methodologies to cope with this new emerging problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.