In clear cell renal cancers, the primary molecular defect is inactivation of the von Hippel-Lindau (VHL) gene. Loss of pVHL, the VHL gene product, leads to constitutive activation of hypoxia-inducible factor (HIF) signaling. While downregulation of HIF suppresses tumor formation by pVHL-defective renal carcinoma cells, the relative contribution of individual HIF regulated genes to HIF-dependent tumorigenesis remains under investigation. Mxi1, a c-Myc antagonist, is a HIF target gene that inhibits mitochondrial biogenesis, reprograms cellular energy metabolism, and protects cells from c-Myc-dependent apoptosis in vitro. In the present study we show that Mxi1 is overexpressed in primary human clear cell kidney cancers. Inhibition of Mxi1 in pVHL-defective kidney cancer cells using shRNA alters their cell cycle parameters, inhibits their ability to invade matrigel, and suppresses their ability to form tumors in vivo. Compared to Mxi1-proficient tumors, Mxi1-deficient tumors display reduced cellular proliferation. These results establish Mxi1 as an important downstream target of HIF that contributes to pVHL-deficient renal cancer tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.