A thin artificial magnetic conductor (AMC) structure is designed and breadboarded for radar cross-section (RCS) Reduction applications. The design presented in this paper shows the advantage of geometrical simplicity while simultaneously reducing the overall thickness (for the current design 16). The design is very pragmatic and is based on a combination of AMC and perfect electric conductor (PEC) cells in a chessboard like configuration. An array of Sievenpiper's mushrooms constitutes the AMC part, while the PEC part is formed by full metallic patches. Around the operational frequency of the AMC-elements, the reflection of the AMC and PEC have opposite phase, so for any normal incident plane wave the reflections cancel out, thus reducing the RCS. The same applies to specular reflections for off-normal incidence angles. A simple basic model has been implemented in order to verify the behavior of this structure, while Ansoft-HFSS software has been used to provide a more thorough analysis. Both bistatic and monostatic measurements have been performed to validate the approach.
This paper presents the design, fabrication and characterization of a planar broadband chessboard structure to reduce the radar cross-section (RCS) of an object. The chessboard like configuration is formed by combining two artificial magnetic conductor (AMC) cells. The bandwidth limitations intrinsic to AMC structures are overcome in this work by properly selecting the phase slope versus frequency of both AMC structures. 180 degrees phase difference has been obtained over more than 40% frequency bandwidth with a RCS reduction larger than 10dB. The influence of the incidence angle in the working bandwidth has been performed. A good agreement between simulations and measurements is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.