Late radiation-induced toxicity, particularly RTOG(swallowing) and RTOG(xerostomia), has a significant impact on the more general dimensions of HRQoL. These findings suggest that the development of new radiation-induced delivery techniques should not only focus on reduction of the dose to the salivary glands, but also on anatomic structures that are involved in swallowing.
LETTER • OPEN ACCESSFirst patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, highfield MRI guided radiotherapy treatment
AbstractThe integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac.Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while
Letter
Institute of Physics and Engineering in MedicineOriginal content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 3 Author to whom any correspondence should be addressed. the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm.In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.
Physician-rated and patient-rated RISD in head and neck cancer patients treated with (CH) RT cannot be predicted with univariate relationships between the dose distribution in a single organ at risk and an endpoint. Separate predictive models are needed for different endpoints and factors other than dose volume histogram parameters are important as well.
The multivariable NTCP models presented in this paper can be used to predict patient-rated xerostomia and sticky saliva. The dose volume parameters included in the models can be used to further optimise IMRT treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.