Heat transport phenomena in the framework of continuum media mechanics is presented. Equations for conservation laws and finite volume numerical method based on these equations are discussed. This method is the foundation of the FLUENT computational fluid dynamics (CFD) package which was used for calculations of the temperature distribution in several examples: steady and evolutional states for single and multiphase systems. Comparison with analytical solutions was carried out. This allows verification of the FLUENT results for various boundary conditions. Independent procedure based on the method of lines was applied for 1D cases and compared with FLUENT and/or analytical results. Formulation of a special type inverse problem for heat equation was given. Analytical solution of the steady-state inverse problem in 1D geometry was developed. Analogues case for 3D geometry was tested using FLUENT. This led to the optimization problem with clear and well defined optimum. This result suggests that in similar but more general inverse problems global optimum may exist which justifies the inverse problem methodology.Zaprezentowano zjawiska transportu ciepła w kontekście mechaniki ośrodków ciągłych. Omówiono równania wyrażające prawa zachowania oraz metodę numeryczną objętości skończonych bazującą na tych prawach. Metoda ta będąca podstawą pakietu FLUENT, który służy do obliczeń w dynamice płynów (CFD, compuational fluid dynamics) została użyta do symulacji rozkładu temperatury w kilku przykładach ilustrujących stany ewolucyjne i stacjonarne dla jedno-i wielo-fazowych układów. Przeprowadzono porównanie z wybranymi rozwiązaniami analitycznymi. Pozwoliło to na weryfikację wyników z FLUENT-a dla różnych warunków brzegowych. Niezależna procedura oparta o metodę linii dla przypadku jednowymiarowego została wykorzystana do porównania z wynikami z FLUENT-a oraz wynikami analitycznymi. Sformułowano pewien specjalny przypadek zagadnienia odwrotnego dla równania ciepła i przedstawiono jego analityczne rozwiązanie. Analogiczny przypadek w geometrii trójwymiarowej przetestowano numerycznie z użyciem FLUENT-a. Prowadzi to do problemu optymalizacji z dobrze określonym minimum globalnym. Wynik ten sugeruje, że w podobnych, ale bardziej ogólnych zagadnieniach odwrotnych może istnieć optimum, co usprawiedliwia metodologię zagadnienia odwrotnego w takich sytuacjach.
The phenomenological model describing the growth of intermetallic phases in multi-component systems is presented. Full time-dynamics approach is applied without the often-used simplifications such as flux constancy. General form of the species flux is considered, which consists of chemical potential gradient as a driving force for diffusion with additional drift term. Stefan-type (moving) boundary conditions are applied. In the present form, the model assumes local equilibrium at each interface and that the process of growth of intermediate phases is controlled by diffusion of reagents through the layers and/or chemical reactions at the boundaries. The model is solved in its full generality. Numerical method for the solution of the problem has been developed. Specially selected change of dependent variables transforms the moving boundary problem into an equivalent fixed boundary problem. Such problem has been treated using the method of lines which converts partial differential equations into a system of ordinary differential equations, which is subsequently solved numerically. The obtained solution was tested and compared with analytic ones available in special cases, showing satisfactory agreement. The growth of intermetallic phases in Ag/Sn/Ag system has been modeled and compared with experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.