Junctional epithelium (JE) is a rapidly proliferating tissue that connects the gum to the tooth, that provides a free surface for bidirectional movement of substances between the body and the oral cavity, and that participates in defense against bacterial infection. It is innervated by numerous sensory nerve fibers that are immunoreactive (IR) for neuropeptides such as calcitonin gene-related peptide (CGRP), and for low affinity nerve growth factor receptor (p75-NGFR). Basal epithelial cells of the JE and of adjacent sulcular epithelium also have intense p75-NGFR-IR. In the present study we removed a wedge of the free gingiva and JE from the anterior side of the maxillary first molar of adult rats, and then studied the return of nerve fibers during tissue regeneration from 1-63 days after gingivectomy. The nerve fibers entered the adjacent healing sulcular epithelium before innervating the new JE, in both cases prior to return of epithelial cell p75-NGFR-IR. The regenerating nerve fibers completely bypassed the zone of epithelial down-growth (long junctional epithelium, LJE) that was briefly present along the tooth from 1-3 weeks after injury. The LJE did not have p75-NGFR-IR and was gradually replaced by a modified thicker regenerated junctional epithelium (RJE). The RJE was attached along the injured root surface, had numerous nerves in basal layers, and it had begun to regain p75-NGFR-IR staining of basal epithelial cells by 22 d. Regenerating nerve fibers at 6-10 d had unusually weak CGRP-IR and greatly increased p75-NGFR-IR. Both nerve stains had returned to normal by 3-6 weeks. The intense p75-NGFR-IR of regenerating nerves was found on both axonal and Schwann cell membranes using electron microscopic immunocytochemistry. In both the normal and regenerating JE, nerve fibers were rare in the attachment layers next to the anterior side of the maxillary first molar, compared to well-innervated basal layers. The complete avoidance of LJE by regenerating nerve fibers and its lack of p75-NGFR-IR suggest that its functions do not require innervation and that it does not make neurotrophic growth factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.