[1] The M w 7.8 October 2010 Mentawai, Indonesia, earthquake was a "tsunami earthquake," a rare type of earthquake that generates a tsunami much larger than expected based on the seismic magnitude. It produced a locally devastating tsunami, with runup commonly in excess of 6 m. We examine this event using a combination of high-rate GPS data, from instruments located on the nearby islands, and a tsunami field survey. The GPS displacement time series are deficient in high-frequency energy, and show small coseismic displacements (<22 cm horizontal and <4 cm subsidence). The field survey shows that maximum tsunami runup was >16 m. Our modeling results show that the combination of the small GPS displacements and large tsunami can only be explained by high fault slip at very shallow depths, far from the islands and close to the oceanic trench. Inelastic uplift of trench sediments likely contributed to the size of the tsunami. Recent results for the 2011 M w 9.0 Tohoko-Oki earthquake have also shown shallow fault slip, but the results from our study, which involves a smaller earthquake, provide much stronger constraints on how shallow the rupture can be, with the majority of slip for the Mentawai earthquake occurring at depths of <6 km. This result challenges the conventional wisdom that the shallow tips of subduction megathrusts are aseismic, and therefore raises important questions both about the mechanical properties of the shallow fault zone and the potential seismic and tsunami hazard of this shallow region.Citation: Hill, E. M., et al. (2012), The 2010 M w 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data,
Geodetic observations show several large, sudden increases in flow speed at Helheim Glacier, one of Greenland's largest outlet glaciers, during summer, 2007. These step‐like accelerations, detected along the length of the glacier, coincide with teleseismically detected glacial earthquakes and major iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic process. Our results link changes in glacier velocity directly to calving‐front behavior at Greenland's largest outlet glaciers, on timescales as short as minutes to hours, and clarify the mechanism by which glacial earthquakes occur.
[1] GRACE data indicate large seasonal variations in gravity that are assumed to be related to climate-driven fluxes of surface water. Seasonal redistribution of surface mass should deform the Earth, and our calculations using GRACE data suggest vertical deformations of $13 mm in the region of greatest flux, the Amazon River Basin. To test the GRACE gravity-hydrology connection, we analyzed GPS data acquired from sites in this region. After accounting for degree 1 variations not observable with GRACE, we find that annual deformation measured with GPS correlates highly with predictions calculated from GRACE measurements. These results confirm the variations in surface water sensed by GRACE, which are significantly larger than those predicted by some hydrology models. The results also demonstrate that GRACE can be an important tool for monitoring deformation of the Earth, and suggest that combined analysis of GRACE and GPS may be a useful approach for estimation of geocenter variations.
We study a mechanism of iceberg breakup that may act together with the recognized melt and wave-induced decay processes. Our proposal is based on observations from a recent field experiment on a large ice island in Baffin Bay, East Canada. We observed that successive collapses of the overburden from above an unsupported wavecut at the iceberg waterline created a submerged foot fringing the berg. The buoyancy stresses induced by such a foot may be sufficient to cause moderate-sized bergs to break off from the main berg. A mathematical model is developed to test the feasibility of this mechanism. The results suggest that once the foot reaches a critical length, the induced stresses are sufficient to cause calving. The theoretically predicted maximum stable foot length compares well to the data collected in situ. Further, the model provides analytical expressions for the previously observed "rampart-moat" iceberg surface profiles.
Analysis of Global Positioning System (GPS) data from two sites separated by a horizontal distance of only ∼2.2 m yielded phase residuals exhibiting a systematic elevation angle dependence. One of the two GPS antennas was mounted on an ∼1‐m‐high concrete pillar, and the other was mounted on a standard wooden tripod. We performed elevation angle cutoff tests with these data and established that the estimate of the vertical coordinate of site position was sensitive to the minimum elevation angle (elevation cutoff) of the data analyzed. For example, the estimate of the vertical coordinate of site position changed by 9.7±0.8 mm when the minimum elevation angle was increased from 10° to 25°. We performed simulations based on a simple (ray tracing) multipath model with a single horizontal reflector which demonstrated that the results from the elevation angle cutoff tests and the pattern of the residuals versus elevation angle could be qualitatively reproduced if the reflector were located 0.1–0.2 m beneath the antenna phase center. We therefore hypothesized that the elevation‐angle‐dependent error was caused by scattering from the horizontal surface of the pillar, located a distance of ∼0.2 m beneath the antenna phase center. We tested this hypothesis by placing microwave absorbing material between the antenna and the pillar in a number of configurations and by analyzing the changes in apparent position of the antenna. The results indicate that (1) the horizontal surface of the pillar is indeed the main scatterer, (2) both the concrete and the metal plate embedded in the pillar are significant sources of scattering, and (3) the scattering can be reduced greatly by the use of microwave absorbing materials. These results have significant implications for the accuracy of global GPS geodetic tracking networks which use pillar‐antenna configurations identical or similar to the one used for this study at the Westford WFRD GPS site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.