p21(CIP) is a potent cell cycle inhibitor often up-regulated in differentiation. Protooncogene MYC induces cell growth and proliferation, inhibits differentiation and represses p21(CIP). However, both molecules are involved in processes of polyploidisation, cell size increase, differentiation and senescence. It is unclear why MYC has a dual role in differentiation. We have previously shown that overexpression of p21(CIP) in K562 myeloid cells induces megakaryocytic differentiation with polyploidy. We have now investigated the requirements for p21(CIP) to block mitosis and induce differentiation in the presence of overactivated MYC. Silencing and over-expression studies showed that p21(CIP) is required to induce differentiation. However, the expression of p21(CIP) needs to be transient to irreversibly inhibit mitosis but not DNA replication, what leads to polyploidy. Transient overexpression of p21(CIP) caused early down-regulation of mitotic Cyclins and up-regulation of G1/S Cyclins D and E, changes typical of endoreplication. Interestingly, over-activation of MYC did not release the proliferative block imposed by p21(CIP) and instead, accelerated cell size increase, megakaryocytic differentiation and polyploidisation. Our data suggests that in some systems p21(CIP) takes part in a mitosis control driving MYC-induced cellular growth into differentiation.
Abstract2,4,6-Triiodophenol (Bobel-24, AM-24) was originally described as a nonsteroid antiinflammatory molecule. We have synthesized three derivatives of and tested their activities as putative antileukemic agents. We have found that Bobel-24 and Bobel-16 were dual inhibitors of cyclooxygenase and 5-lipoxygenase, whereas Bobel-4 and Bobel-30 were selective against 5-lipoxygenase. We have tested the antiproliferative activity of these compounds on a panel of cell lines derived from myeloid and lymphoid leukemias (K562, Raji, HL-60, and Molt4). The cytotoxic IC 50 in these cell lines ranged between 14 and 50 Mmol/L, but it was higher for nontransformed cells such as 32D, NIH3T3, or human leukocytes. All compounds showed cytotoxic activity on all tested cell lines, accompanied by DNA synthesis inhibition and arrest in the G 0 /G 1 phase. Bobel-16, Bobel-4, and Bobel-24 induced a caspase-independent cell death in K562 and Raji cells, accompanied by chromatin condensation, cytochrome c release, and dissipation of mitochondrial membrane potential in a concentration-dependent manner and production of reactive oxygen species. As the proto-oncogene MYC is involved in mitochondrial biogenesis and survival of leukemia cells, we tested its effect on bobel activity. Bobel-24 induced down-regulation of MYC in K562 and, consistently, ectopic expression of MYC results in partial protection towards the cytotoxic effect of Bobel-24. In conclusion, Bobel derivatives induce a caspase-and Bcl-2-independent cell death in which mitochondrial permeabilization and MYC down-regulation are involved. Bobels may serve as prototypes for the development of new agents for the therapy of leukemia. [Mol Cancer Ther 2006;5(5):1166-75]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.