Abstract-This paper reviews the use of frequency-resolved optical gating (FROG) to characterize mode-locked lasers producing ultrashort pulses suitable for high-capacity optical communications systems at wavelengths around 1550 nm. Secondharmonic generation (SHG) FROG is used to characterize pulses from a passively mode-locked erbium-doped fiber laser, and both single-mode and dual-mode gain-switched semiconductor lasers. The compression of gain-switched pulses in dispersion compensating fiber is also studied using SHG-FROG, allowing optimal compression conditions to be determined without a priori assumptions about pulse characteristics. We also describe a fiberbased FROG geometry exploiting cross-phase modulation and show that it is ideally suited to pulse characterization at optical communications wavelengths. This technique has been used to characterize picosecond pulses with energy as low as 24 pJ, giving results in excellent agreement with SHG-FROG characterization, and without any temporal ambiguity in the retrieved pulse.
The technique of frequency-resolved optical gating is used to characterize the intensity and the phase of picosecond pulses after propagation through 700 m of fiber at close to the zero-dispersion wavelength. Using the frequency-resolved optical gating technique, we directly measure the severe temporal distortion resulting from the interplay between self-phase modulation and higher-order dispersion in this regime. The measured intensity and phase of the pulses after propagation are found to be in good agreement with the predictions of numerical simulations with the nonlinear Schrödinger equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.