1. We use Cassels's notation and define h (m, n), Q (m, n), Zh (s), Zh (1) – ZQ (1) and G (x, y) as in [1]. Rankin [5] proved that the Epstein zeta-function Zh (s) satisfies, for s ≧ 1·035, theTHEOREM. For s > 0, Zh (s) — ZQ (s) ≧ 0 with equality if and only ifh is equivalent to Q. Rankin then asked whether the theorem is true for all s > 1. Cassels [1] answered this question in the affirmative and proved further that the theorem is true for all s > 0.
In fundamental papers Bernstein (3) and Loève(8) have proved central limit theorems for wide classes of dependent variables. Their theorems are stated in terms of conditional distributions. In the case of dn-dependent variables (see § 3) they assume the existence, as the ‘conditioning’ variates vary, of finite upper bounds for certain conditional absolute moments higher than the second. More recently, Hoeffding and Robbins (7) have proved central limit theorems for m-dependent variables with finite third absolute moments, and Moran(10) has given a direct generalization of the Lindeberg-Lévy theorem for stationary discrete linear scalar processes.
In a previous paper (4) central limit theorems were obtained for sequences of m-dependent random variables (r.v.'s) asymptotically stationary to second order, the sufficient conditions being akin to the Lindeberg condition (3). In this paper similar theorems are obtained for sequences of m-dependent r.v.'s with bounded variances and with the property that for large n, where s′n is the standard deviation of the nth partial sum of the sequence. The same basic ideas as in (4) are used, but the proofs have been simplified. The results of this paper are examined in relation to earlier ones of Hoeffding and Robbins(5) and of the author (4). The cases of identically distributed r.v.'s and of vector r.v.'s are mentioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.