SUMMARYCrops of winter wheat (Triticum aestivum L. cv. Hereward) were grown within temperature gradient tunnels at a range of temperatures at either c. 350 or 700 μmol mol−1 CO2 in 1991/92 and 1992/93 at Reading, UK. At terminal spikelet stage, leaf area was 45% greater at elevated CO2 in the first year due to more tillers, and was 30% greater in the second year due to larger leaf areas on the primary tillers. At harvest maturity, total crop biomass was negatively related to mean seasonal temperature within each year and CO2 treatment, due principally to shorter crop durations at the warmer temperatures. Biomass was 6–31% greater at elevated compared with normal CO2 and was also affected by a positive interaction between temperature and CO2 in the first year only. Seed yield per unit area was greater at cooler temperatures and at elevated CO2 concentrations. A 7–44% greater seed dry weight at elevated CO2 in the first year was due to more ears per unit area and heavier grains. In the following year, mean seed dry weight was increased by > 72% at elevated CO2, because grain numbers per ear did not decline with an increase in temperature at elevated CO2. Grain numbers were reduced by temperatures > 31 °C immediately before anthesis at normal atmospheric CO2 in 1992/93, and at both CO2 concentrations in 1991/92. To quantify the impact of future climates of elevated CO2 concentrations and warmer temperatures on wheat yields, consideration of both interactions between CO2 and mean seasonal temperature, and possible effects of instantaneous temperatures on yield components at different CO2 concentrations are required. Nevertheless, the results obtained suggest that the benefits to winter wheat grain yield from CO2 doubling are offset by an increase in mean seasonal temperature of only 1·0 °C to 1·8 °C in the UK.
Cacao (Theobroma cacao L.) is a tropical perennial crop which is of great economic importance to the confectionary industry and to the economies of many countries of the humid tropics where it is grown. Some recent studies have suggested that climate change could severely impact cacao production in West Africa. It is essential to incorporate our understanding of the physiology and genetic variation within cacao germplasm when discussing the implications of climate change on cacao productivity and developing strategies for climate resilience in cacao production. Here, we review the current research on the physiological responses of cacao to various climate factors. Our main findings are as follows: (1) water limitation causes significant yield reduction in cacao, but genotypic variation in sensitivity is evident; (2) in the field, cacao experiences higher temperatures than is often reported in the literature; (3) the complexity of the cacao/shade tree interaction can lead to contradictory results; (4) elevated CO 2 may alleviate some negative effects of climate change; (5) implementation of mitigation strategies can help reduce environmental stress; and (6) significant gaps in the research need addressing to accelerate the development of climate resilience. Harnessing the significant genetic variation apparent within cacao germplasm is essential to develop modern varieties capable of high yields in non-optimal conditions. Mitigation strategies will also be essential, but to use shading to best effect shade tree selection is crucial to avoid resource competition. Cacao is often described as being sensitive to climate change, but genetic variation, adaptive responses, appropriate mitigation strategies and interactive climate effects should all be considered when predicting the future of cacao production. Incorporating these physiological responses to various environmental conditions and developing a deeper understanding of the processes underlying these responses will help to accelerate the development of a more resource use efficient tree ensuring sustainable production into the future.
Environmental cues influence the development of stomata on the leaf epidermis, and allow plants to exert plasticity in leaf stomatal abundance in response to the prevailing growing conditions. It is reported that Arabidopsis thaliana ‘Landsberg erecta’ plants grown under low relative humidity have a reduced stomatal index and that two genes in the stomatal development pathway, SPEECHLESS and FAMA, become de novo cytosine methylated and transcriptionally repressed. These environmentally-induced epigenetic responses were abolished in mutants lacking the capacity for de novo DNA methylation, for the maintenance of CG methylation, and in mutants for the production of short-interfering non-coding RNAs (siRNAs) in the RNA-directed DNA methylation pathway. Induction of methylation was quantitatively related to the induction of local siRNAs under low relative humidity. Our results indicate the involvement of both transcriptional and post-transcriptional gene suppression at these loci in response to environmental stress. Thus, in a physiologically important pathway, a targeted epigenetic response to a specific environmental stress is reported and several of its molecular, mechanistic components are described, providing a tractable platform for future epigenetics experiments. Our findings suggest epigenetic regulation of stomatal development that allows for anatomical and phenotypic plasticity, and may help to explain at least some of the plant’s resilience to fluctuating relative humidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.