For decades, the source of Earth's volatiles, especially water with a deuterium-to-hydrogen ratio (D/H) of (1.558 ± 0.001) × 10(-4), has been a subject of debate. The similarity of Earth's bulk composition to that of meteorites known as enstatite chondrites suggests a dry proto-Earth with subsequent delivery of volatiles by local accretion or impacts of asteroids or comets. Previous measurements in six comets from the Oort cloud yielded a mean D/H ratio of (2.96 ± 0.25) × 10(-4). The D/H value in carbonaceous chondrites, (1.4 ± 0.1) × 10(-4), together with dynamical simulations, led to models in which asteroids were the main source of Earth's water, with ≤10 per cent being delivered by comets. Here we report that the D/H ratio in the Jupiter-family comet 103P/Hartley 2, which originated in the Kuiper belt, is (1.61 ± 0.24) × 10(-4). This result substantially expands the reservoir of Earth ocean-like water to include some comets, and is consistent with the emerging picture of a complex dynamical evolution of the early Solar System.
We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep.
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet's birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and welldefined planet sample within its 4-year mission lifetime. Transit, eclipse and phasecurve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10-100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H 2 O, CO 2 , CH 4 NH 3 , HCN, H 2 S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performedusing conservative estimates of mission performance and a
Heat transport and ice sublimation in comets are interrelated processes reflecting properties acquired at the time of formation and during subsequent evolution. The Microwave Instrument on the Rosetta Orbiter (MIRO) acquired maps of the subsurface temperature of comet 67P/Churyumov-Gerasimenko, at 1.6 mm and 0.5 mm wavelengths, and spectra of water vapor. The total H2O production rate varied from 0.3 kg s(-1) in early June 2014 to 1.2 kg s(-1) in late August and showed periodic variations related to nucleus rotation and shape. Water outgassing was localized to the "neck" region of the comet. Subsurface temperatures showed seasonal and diurnal variations, which indicated that the submillimeter radiation originated at depths comparable to the diurnal thermal skin depth. A low thermal inertia (~10 to 50 J K(-1) m(-2) s(-0.5)), consistent with a thermally insulating powdered surface, is inferred.
We describe the design and construction of GREAT (German REceiver for Astronomy at Terahertz frequencies) operated on the Stratospheric Observatory For Infrared Astronomy (SOFIA). GREAT is a modular dual-color heterodyne instrument for highresolution far-infrared (FIR) spectroscopy. Selected for SOFIA's Early Science demonstration, the instrument has successfully performed three Short and more than a dozen Basic Science flights since first light was recorded on its April 1, 2011 commissioning flight. We report on the in-flight performance and operation of the receiver that -in various flight configurations, with three different detector channels -observed in several science-defined frequency windows between 1.25 and 2.5 THz. The receiver optics was verified to be diffraction-limited as designed, with nominal efficiencies; receiver sensitivities are state-of-the-art, with excellent system stability. The modular design allows for the continuous integration of latest technologies; we briefly discuss additional channels under development and ongoing improvements for Cycle 1 observations. GREAT is a principal investigator instrument, developed by a consortium of four German research institutes, available to the SOFIA users on a collaborative basis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.