Two transgenic tobacco lines were genetically engineered to contain chimaeric genes encoding the glutamine synthetase (GS) gamma polypeptide of Phaseolus vulgaris (French bean), expressed from the cauliflower mosaic virus 35S promoter. One (MIT-1) contained two copies of a construct including the first 60 amino acids of the Nicotiana plumbaginifolia beta-F1 ATPase to target the GS polypeptide to the mitochondrion. The other (CYT-4) contained a single copy of a cytosolic GS construct. Leaves of in vitro plantlets expressed the constructs and contained a novel GS polypeptide, which assembled into active GS isoenzymes constituting about 25% of the total GS activity. In in vitro plantlets of MIT-1, but not CYT-4, the novel polypeptide was found to be associated with the mitochondria. Moreover in MIT-1, the size of the novel polypeptide was not that predicted of the precursor (44.9 kDa) but was about 39 kDa, the same size as the authentic GS gamma polypeptide in CYT-4. These results are consistent with the precursor being imported into the mitochondria and cleaved near the fusion junction between the two sequences. These experiments have therefore shown that the presequence of the beta-F1 ATPase has successfully targeted the GS gamma polypeptide to the mitochondria of transgenic tobacco where it has assembled into an active isoenzyme. However, in fully regenerated plants growing photoautotrophically in growth-room conditions, although the constructs were still expressed, the gamma polypeptide did not accumulate to the same levels as in in vitro plantlets and new isoenzyme activities were now barely detectable. Moreover in leaves of the mature MIT-1 plants, the gamma polypeptide was found to be associated with the insoluble fraction of the mitochondria. The results of these experiments are discussed.
A family of genes, the so-called msr genes (multiple stimulus response), has recently been identified on the basis of sequence homology in various plant species. Members of this gene family are thought to be regulated by a number of environmental or developmental stimuli, although it is not known whether any one member responds more specifically to one stimulus, or whether each gene member responds to various environmental stimuli. In this report, we address this question by studying the tobacco msr gene str246C. Using transgenic tobacco plants containing 2.1 kb of 5' flanking DNA sequence from the str246C gene fused to the beta-glucuronidase (GUS) coding region, the complex expression pattern of the str246C promoter has been characterized. Expression of the str246C promoter is strongly and rapidly induced by bacterial, fungal and viral infection and this induction is systemic. Elicitor preparations from phytopathogenic bacteria and fungi activate the str246C promoter to high levels, as do wounding, the application of auxin, auxin and cytokinin, salicylic acid or copper sulfate, indicating the absence of gene specialization within the msr gene family, at least for str246C. In addition, GUS activity was visualized histochemically in root meristematic tissues of tobacco seedlings and is restricted to roots and sepals of mature plants. Finally, analysis of a series of 5' deletions of the str246C promoter-GUS gene fusion in transgenic tobacco plants confirms the involvement of multiple regulatory elements. A region of 83 bp was found to be necessary for induction of promoter activity in response to Pseudomonas solanacearum, while auxin inducibility and root expression are apparently not controlled by this element, since its removal does not abolish either response. An element of the promoter with a negative effect on promoter activation by P. solanacearum was also identified.
The gln-delta gene, which encodes the plastid-located glutamine synthetase of Phaseolus vulgaris, was cloned and its promoter region was sequenced. Primer extension analysis was used to map the two major transcription initiation sites which are about 90 nucleotides apart. A fusion of 2.3 kb of the upstream region of the gln-delta gene to the reporter gene uidA encoding beta-glucuronidase was shown to be expressed in the chlorophyllous cell types of leaves and stems and in the root meristem region of transgenic tobacco. Analysis of a series of three 5' promoter deletion fusions revealed the presence of a region essential for promoter activity between -786 and -327 and regions involved in tissue-specific regulation and light regulation between -786 and +43.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.