The Energetic Particle Detector (EPD) Investigation is one of 5 fields-andparticles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth's magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly's Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to > 0.5 MeV (with capabilities to measure up to > 1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to > 0.5 MeV, and also measures total ion energy distributions from 45 keV to > 0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth's magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth's magnetotail during the about 6 months that comprise orbital phase 2.Keywords NASA mission · Magnetospheric multiscale · Magnetosphere · Magnetic reconnection · Space plasma · Particle acceleration 1 EPD Introduction, Background, Science Goals Background and OverviewThe purpose of NASA's Magnetospheric Multiscale (MMS) mission, as described by Burch et al. (this issue), is to provide understanding of the fundamental physics of the critical energy conversion process of magnetized space plasmas called Magnetic Reconnection. Magnetic reconnection is a spatially localized process that converts magnetic energy that is derived from the flow energy of ionized gases (plasmas), into particle energy in the form of different forms of plasma flow, heating, and particle energization To provide that understanding, the MMS mission comprises 4 spacecraft that fly in formation (10 to 400 km apart) in highly elliptical orbits (1.2 × 12 to 1.2 × 25 RE), thereby ob...
A new drift kinetic theory for the plasma response to the neoclassical tearing mode (NTM) magnetic perturbation is presented. Small magnetic islands of width, w ≪ a (a is the tokamak minor radius) are assumed, retaining the limit w ∼ ρ bi (ρ bi is the ion banana orbit width) to include finite orbit width effects. When collisions are small, the ions/electrons follow streamlines in phase space; for passing particles, these lie in surfaces that reproduce the magnetic island structure but have a radial shift by an amount, proportional to ρ ϑ i / e , where ρ ϑ i / e is the ion/electron poloidal Larmor radius. This shift is associated with the curvature and ∇B drifts and is found to be in opposite directions for V ∥ ≶ 0 , where V ∥ is the component of velocity parallel to the magnetic field. The particle distribution function is then found to be flattened across these shifted or drift islands rather than the magnetic island. This results in the pressure gradient being sustained across the magnetic island for w ∼ ρ ϑ i and hence reduces the neoclassical drive for NTMs when w is small. This provides a physics basis for the NTM threshold, which is quantified. In Imada et al (2019 Nucl. Fusion 59 046016, and references therein), a 4D drift kinetic non-linear code has been applied to describe these modes. In the present paper, the drift island formalism is employed. Valid at low collisionality, it allows a dimensionality reduction to a 3D problem, simplifying the numerical task and efficiently resolving the collisional boundary layer across the trapped-passing boundary. An improved model is adopted for the magnetic drift frequency. This decreases the NTM threshold, compared to the results shown in Imada et al (2019 Nucl. Fusion 59 046016, and references therein), making it in quantitative agreement with experimental observations, with w c = 0.45 ρ ϑ i , where w c is the threshold magnetic island half-width, or 2.85ρ bi for the full threshold island width, predicted for our equilibrium.
Abstract. Observations of ion-scale (k y ρ i ≤ 1) density turbulence of relative amplitude 0.2% are available on the Mega Amp Spherical Tokamak (MAST) using a 2D (8 radial × 4 poloidal channel) imaging Beam Emission Spectroscopy (BES) diagnostic. Spatial and temporal characteristics of this turbulence, i.e., amplitudes, correlation times, radial and perpendicular correlation lengths and apparent phase velocities of the density contours, are determined by means of correlation analysis. For a low-density, L-mode discharge with strong equilibrium flow shear exhibiting an internal transport barrier (ITB) in the ion channel, the observed turbulence characteristics are compared with synthetic density turbulence data generated from global, non-linear, gyro-kinetic simulations using the particle-in-cell (PIC) code NEMORB. This validation exercise highlights the need to include increasingly sophisticated physics, e.g., kinetic treatment of trapped electrons, equilibrium flow shear and collisions, to reproduce most of the characteristics of the observed turbulence. Even so, significant discrepancies remain: an underprediction by the simulations of the turbulence amplituide and heat flux at plasma periphery and the finding that the correlation times of the numerically simulated turbulence are typically two orders of magnitude longer than those measured in MAST. Comparison of these correlation times with various linear timescales suggests that, while the measured turbulence is strong and may be 'critically balanced', the simulated turbulence is weak.
Using Active Magnetospheric Particle Tracer Explorers/Ion Release Module data from 10 magnetosheath crossings in the 11–13 LT sector, we have investigated the behavior of the proton temperature and the proton temperature anisotropy between the bow shock and the magnetopause. The proton anisotropy increases toward the magnetopause. Comparison with earlier predictions, however, shows that this increase is much more modest than was predicted by assuming the double adiabatic equations. It is shown that neither of the two double‐adiabatic equations holds separately. We conclude that energy is transferred between the perpendicular and the parallel component of the proton temperature. It is well established that instabilities such as the mirror and the ion‐cyclotron instability show such a behavior and lead to a decrease in the temperature anisotropy. Our data show that in the magnetosheath proper, the threshold for the onset of the mirror instability is always marginally met. We show that we can give an empirical relation between the temperature anisotropy and β⊥, as long as β⊥ is not less than 1.
A new drift kinetic theory for the response of ions to small magnetic islands in toroidal plasma is presented. Islands whose width w is comparable to the ion poloidal Larmor radius are considered, expanding the ion response solution in terms of , where r is the minor radius. In this limit, the ion distribution can be represented as a function of toroidal canonical momentum, . With effects of grad-B and curvature drifts taken into account, the ion distribution function is a constant on a ‘drift island’ structure, which is identical to the magnetic island but radially shifted by . The distribution is then flattened across the drift island, rather than the magnetic island. For small islands , the pressure gradient is maintained across the magnetic island, suppressing the bootstrap current drive for the neoclassical tearing mode (NTM) growth. As , the ions are largely unperturbed. However, the electrons respond to the electrostatic potential required for quasi-neutrality and this provides a stabilizing contribution to the NTM evolution. This gives a new physical understanding of the NTM threshold mechanism, with implications for the design of NTM control systems for future tokamaks such as ITER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.