Microsatellites are widely used as genetic markers because they are co-dominant, multiallelic, easily scored and highly polymorphic. A major drawback of microsatellite markers is the time and cost required to characterise them. We have developed a novel technique to reduce this cost by producing a microsatellite-rich PCR profile from genomic DNA which was cloned to yield a genomic library enriched for microsatellites. Sequence data and subsequent allele scoring within pedigrees revealed that these microsatellites retained their original repeat length and segregated normally. This technique permits genomic amplification with only one specific primer. Together with enrichment, the savings in primer costs reduces the cost of microsatellite characterisation considerably.
BackgroundRecent technological advances have made it possible to efficiently genotype large numbers of single nucleotide polymorphisms (SNPs) in livestock species, allowing the production of high-density linkage maps. Such maps can be used for quality control of other SNPs and for fine mapping of quantitative trait loci (QTL) via linkage disequilibrium (LD).ResultsA high-density bovine linkage map was constructed using three types of markers. The genotypic information was obtained from 294 microsatellites, three milk protein haplotypes and 6769 SNPs. The map was constructed by combining genetic (linkage) and physical information in an iterative mapping process. Markers were mapped to 3,155 unique positions; the 6,924 autosomal markers were mapped to 3,078 unique positions and the 123 non-pseudoautosomal and 19 pseudoautosomal sex chromosome markers were mapped to 62 and 15 unique positions, respectively. The linkage map had a total length of 3,249 cM. For the autosomes the average genetic distance between adjacent markers was 0.449 cM, the genetic distance between unique map positions was 1.01 cM and the average genetic distance (cM) per Mb was 1.25.ConclusionThere is a high concordance between the order of the SNPs in our linkage map and their physical positions on the most recent bovine genome sequence assembly (Btau 4.0). The linkage maps provide support for fine mapping projects and LD studies in bovine populations. Additionally, the linkage map may help to resolve positions of unassigned portions of the bovine genome.
General cognitive ability (g), which is related to many aspects of brain functioning, is one of the most heritable traits in neuroscience. Similarly to other heritable quantitatively distributed traits, genetic influence on g is likely to be due to the combined action of many genes of small effect [quantitative trait loci (QTLs)], perhaps several on each chromosome. We used DNA pooling for the first time to search a chromosome systematically with a dense map of DNA markers for allelic associations with g. We screened 147 markers on chromosome 4 such that 85% of the chromosome were estimated to be within 1 cM of a marker. Comparing pooled DNA from 51 children of high g and from 51 controls of average g, 11 significant QTL associations emerged. The association with three of these 11 markers ( D4S2943, MSX1 and D4S1607 ) replicated using DNA pooling in independent samples of 50 children of extremely high g and 50 controls. Furthermore, all three associations were confirmed when each individual was genotyped separately ( D4S2943, P = 0. 00045; MSX1, P = 0.011; D4S1607, P = 0.019). Identifying specific genes responsible for such QTL associations will open new windows in cognitive neuroscience through which to observe pathways between genes and learning and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.