Abstract.The recently discovered Fe pnictide and chalcogenide superconductors display low temperature properties suggesting superconducting gap structures which appear to vary substantially from family to family, and even within family as a function of doping or pressure. We propose that this apparent nonuniversality can actually be understood by considering the predictions of spin fluctuation theory and accounting for the peculiar electronic structure of these systems, coupled with the likely "sign-changing s-wave" (s ± ) symmetry. We review theoretical aspects, materials properties, and experimental evidence relevant to this suggestion, and discuss which further measurements would be useful to settle these issues.
Weak-coupling approaches to the pairing problem in the iron pnictide superconductors have predicted a wide variety of superconducting ground states. We argue here that this is due both to the inadequacy of certain approximations to the effective low-energy band structure, and to the natural near-degeneracy of different pairing channels in superconductors with many distinct Fermi surface sheets. In particular, we review attempts to construct two-orbital effective band models, the argument for their fundamental inconsistency with the symmetry of these materials, and compare the dynamical susceptibilities of two and five-orbital tight-binding models. We then present results for the magnetic properties, pairing interactions, and pairing instabilities within a five-orbital tight-binding Random Phase Approximation model. We discuss the robustness of these results for different dopings, interaction strengths, and variations in band structure. Within the parameter space explored, an anisotropic, sign-changing s-wave (A1g) state and a d x 2 −y 2 (B1g) state are nearly degenerate, due to the near nesting of Fermi surface sheets. 74.25.Ha,74.25.Jb,74.25.Kc
FeSe is the focus of intense research interest because of its unusual non-magnetic nematic state and because it forms the basis for achieving the highest critical temperatures of any iron-based superconductor. However, its Cooper pairing mechanism has not been determined because an accurate knowledge of the momentum-space structure of superconducting energy gaps ∆ i ( k) on the different electron-bands E i ( k) does not exist. Here we use Bogoliubov quasiparticle interference (BQPI) imaging to determine the coherent Fermi surface geometry of the α-and ε-bands surrounding the Γ = (0, 0) and X = (π/a Fe , 0) points of FeSe, and to measure their superconducting energy gaps ∆ α ( k) and ∆ ε ( k).We show directly that both gaps are extremely anisotropic but nodeless, and are aligned along orthogonal crystal axes. Moreover, by implementing a novel technique we demonstrate the sign change between ∆ α ( k) and ∆ ε ( k). This complex configuration of ∆ α ( k) and ∆ ε ( k), which was unanticipated within pairing theories for FeSe, reveals a unique form of superconductivity based on orbital selective Cooper pairing of electrons from the d yz orbitals of iron atoms. This new paradigm of orbital selectivity may be pivotal to understanding the microscopic interplay of quantum paramagnetism, nematicity and high temperature superconductivity. BIOGRAPHICAL SKETCHPeter Oliver Sprau was born on June 13th 1986 in the small town of Kirchheimbolanden, Germany, where he completed both his primary and secondary education. Long before he was a physicist, Peter was an active member of the track and field team in his school and a local club, even going on to compete in the dash and relay event on the state and federal youth level. Upon finishing school, he fulfilled his civic duty and carried out his alternative civilian service in the hospital in Kirchheimbolanden. While Peter's academic interests were diverse, including not just science but also Latin and history, his natural curiosity about the world finally urged him to pursue a higher education in physics. Mistakes. Make glorious, amazing mistakes. Make mistakes nobody's ever made before. Don't freeze, don't stop, don't worry that it isn't good enough, or it isn't perfect, whatever it is: art, or love, or work or family or life.Whatever it is you're scared of doing, Do it. Make your mistakes, next year and forever." I also want to acknowledge in no specific order the following people for useful discussions throughout my PhD:
In materials with strong local Coulomb interactions, simple defects such as atomic substitutions strongly affect both macroscopic and local properties of the system. A nonmagnetic impurity, for instance, is seen to induce magnetism nearby. Even without disorder, models of such correlated systems are generally not soluble in 2 or 3 dimensions, and so few exact results are known for the properties of such impurities. Nevertheless, some simple physical ideas have emerged from experiments and approximate theories. Here, we first review what we can learn about this problem from 1D antiferromagnetically correlated systems. We then discuss experiments on the high Tc cuprate normal state which probe the effect of impurities on local charge and spin degrees of freedom, and compare with theories of single impurities in correlated hosts, as well as phenomenological effective Kondo descriptions. Subsequently, we review theories of impurities in d-wave superconductors including residual quasiparticle interactions, and compare with experiments in the superconducting state. We argue that existing data exhibit a remarkable similarity to impurity-induced magnetism in the 1D case, implying the importance of electronic correlations for the understanding of these phenomena, and suggesting that impurities may provide excellent probes of the still poorly understood ground state of the cuprates.Comment: 66 pages, 48 figures, review articl
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.