Zuid 8, 6525 GA Nijmegen 3Dotulabs, Sint Annastraat 85, 6524 EJ Nijmegen and 4FarmaResearch Snelliusstraat 6, 6533 NV Nijmegen, The Netherlands 1 The pharmacokinetics of 500 mg naproxen given orally were described in 10 subjects using a direct h.p.l.c. analysis of the acyl glucuronide conjugates of naproxen and its metabolite 0-desmethylnaproxen. 2 The mean elimination half-life of naproxen was 24.7 ± 6.4 h (range 7 to 36 h). 3 Naproxen acyl glucuronide accounted for 50.8 ± 7.3% of the dose recovered in the urine, its isomerised conjugate isoglucuronide for 6.5 ± 2.0%, 0-desmethylnaproxen acyl glucuronide for 14.3 ± 3.4%, and its isoglucuronide for 5.5 ± 1.3%. Naproxen and 0-desmethylnaproxen were excreted in negligible amounts (< 1%). 4 Even though the urine pH of the subjects was kept acid in order to stabilize the acyl glucuronides, isomerisation took place in blood. 5 The extents of plasma binding of the unconjugated compounds were 98% (naproxen) and 100% (0-desmethylnaproxen), while naproxen acyl glucuronide binding was 92%; that of its isomer isoglucuronide 66%. 0-desmethylnaproxen acyl glucuronide was 72% bound and its isoglucuronide was 42% bound. 6 Cimetidine (400 mg twice daily) decreased the t',, of naproxen by 39-60% (mean 47.3 + 11.5%; P = 0.0014) from 24.7 ± 6.4 h to 13.2 ± 1.0 h. It increased (10%) the urinary recovery of naproxen acyl glucuronide (P = 0.0492). The urinary recoveries of naproxen isoglucuronide and 0-desmethylnaproxen acyl glucuronide remained unchanged.
The pharmacokinetics of flumequine was studied in 1-, 5- and 18-week-old veal calves. A two-compartment model was used to fit the plasma concentration-time curve of flumequine after the intravenous injection of 10 mg/kg of a 10% solution. The elimination half-life (t1/2 beta) of the drug ranged from 6 to 7 h. The Vd beta and ClB of 1-week-old calves (1.07 l/kg, 1.78 ml/min/kg) were significantly lower than those of 5-week-old (1.89 l/kg, 3.23 ml/min/kg) and 18-week-old calves (1.57 l/kg, 3.10 ml/min/kg). After the oral administration of 10 mg/kg of a 2% flumequine formulation mixed with milk replacer, the Cmax was highest in 1-week-old (9.27 micrograms/ml) and lowest in 18-week-old calves (4.47 micrograms/ml). The absorption was rapid (Tmax of approximately 3 h) and complete. When flumequine itself and a formulation containing 2% flumequine and 20 X 10(6) iu of colistin sulphate were mixed with milk replacer and administered at the same dose rate, absorption was incomplete and Cmax was lower. The main urinary metabolite of flumequine was the glucuronide conjugate (approximately 40% recovery within 48 h of intravenous injection) and the second most important metabolite was 7-hydroxy-flumequine (approximately 3% recovery within 12 h of intravenous injection). Only 3.2-6.5% was excreted in the urine unchanged. After oral administration a 'first-pass' effect was observed, with a significant increase in the excretion of conjugated drug. For 1-week-old calves it is recommended that the 2% formulation should be administered at a dose rate of 8 mg/kg every 24 h or 4 mg/kg every 12 h; for calves over 6 weeks old, the dose should be increased to 15 mg/kg every 24 h or 7.5 mg/kg every 12 h. The formulation containing colistin sulphate should be administered to 1-week-old calves at a flumequine dose of 12 mg/kg every 24 h or 6 mg/kg every 12 h.
The aim of this investigation was to assess the pharmacokinetics of naproxen in 10 human subjects after an oral dose of 500 mg using a direct HPLC analysis of the acyl glucuronide conjugates of naproxen and its metabolite O-desmethylnaproxen. The mean t1/2 of naproxen in 9 subjects was 24.7 +/- 6.4 h (range 16 to 36 h). The t1/2 of 7.4 as found in subject number 10 must, therefore, be regarded as an extraordinary case (p < 0.0153). Naproxen acyl glucuronide accounts for 50.8 +/- 7.32 per cent of the dose, its isomerized conjugate isoglucuronide for 6.5 +/- 2.0 per cent, O-desmethylnaproxen acyl glucuronide for 14.3 +/- 3.4 per cent, and its isoglucuronide for 5.5 +/- 1.3 per cent (n = 10; 100 h collection period). Naproxen and O-desmethylnaproxen are excreted in negligible amounts (< 1 per cent). Even though urine pH of the subjects was kept acid (range pH 5.0-5.5) in order to stabilize the acyl glucuronides, isomerization takes place in blood when the acyl glucuronide is released from the liver for excretion by the kidney. Binding to plasma proteins was measured as 98 per cent and 100 per cent, respectively for the unconjugated compounds naproxen and O-desmethylnaproxen. Binding of the acyl glucuronides was less, being 92 per cent; for naproxen acyl glucuronide, 66 per cent for naproxen isoglucuronide, 72 per cent for O-desmethylnaproxen acyl glucuronide and 42 per cent for O-desmethylnaproxen isoglucuronide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.