Rubisco catalyses the carboxylation of ribulose-1,5-bisphosphate (RuBP), enabling net CO2 assimilation in photosynthesis. The properties and regulation of Rubisco are not optimal for biomass production in current and projected future environments. Rubisco is relatively inefficient, and large amounts of the enzyme are needed to support photosynthesis, requiring large investments in nitrogen. The competing oxygenation of RuBP by Rubisco decreases photosynthetic efficiency. Additionally, Rubisco is inhibited by some sugar phosphates and depends upon interaction with Rubisco activase (Rca) to be reactivated. Rca activity is modulated by the chloroplast redox status and ADP/ATP ratios, thereby mediating Rubisco activation and photosynthetic induction in response to irradiance. The extreme thermal sensitivity of Rca compromises net CO2 assimilation at moderately high temperatures. Given its central role in carbon assimilation, the improvement of Rubisco function and regulation is tightly linked with irradiance, nitrogen and water use efficiencies. Although past attempts have had limited success, novel technologies and an expanding knowledge base make the challenge of improving Rubisco activity in crops an achievable goal. Strategies to optimize Rubisco and its regulation are addressed in relation to their potential to improve crop resource use efficiency and climate resilience of photosynthesis.
The specificity factor of Rubisco is a measure of the relative capacities of the enzyme to catalyse carboxylation and oxygenation of ribulose 1,5-bisphosphate and hence to control the relative rates of photosynthetic carbon assimilation and photorespiration. Specificity factors of purified Rubisco from 24 species of C 3 plants found in diverse habitats with a wide range of environmental growth limitations by both water availability and temperature in the Balearic Islands were measured at 25 ∞ ∞ ∞ ∞C. The results suggest that specificity factors are more dependent on environmental pressure than on phylogenetic factors. Irrespective of phylogenetic relationships, higher specificity factors were found in species characteristically growing in dryer environments and in species that are hemideciduous or evergreen. Effects of temperature on specificity factor of the purified enzyme from 14 species were consistent with the concept that higher specificity factors were associated with an increase in the activation energy for oxygenation compared to carboxylation of the 2,3-enediolate of RuBP to the respective transition state intermediates. The results are discussed in terms of selection pressures leading to the differences in specificity factors and the value of the observations for identifying useful genetic manipulation to change Rubisco polypeptide subunits.
In photosynthesis Rubisco catalyses the assimilation of CO(2) by the carboxylation of ribulose-1,5-bisphosphate. However, the catalytic properties of Rubisco are not optimal for current or projected environments and limit the efficiency of photosynthesis. Rubisco activity is highly regulated in response to short-term fluctuations in the environment, although such regulation may not be optimally poised for crop productivity. The regulation of Rubisco activity in higher plants is reviewed here, including the role of Rubisco activase, tight binding inhibitors, and the impact of abiotic stress upon them.
Genetic modification to increase the specificity of Rubisco for CO(2) relative to O(2) and to increase the catalytic rate of Rubisco in crop plants would have great agronomic importance. The availability of three-dimensional structures of Rubisco at atomic resolution and the characterization of site-directed mutants have greatly enhanced the understanding of the catalytic mechanism of Rubisco. Considerable progress has been made in identifying natural variation in the catalytic properties of Rubisco from different species and in developing the tools for introducing both novel and foreign Rubisco genes into plants. The additional complexities of assembling copies of the two distinct polypeptide subunits of Rubisco into a functional holoenzyme in vivo (requiring sufficient expression, post-translational modification, interaction with chaperonins, and interaction with Rubisco activase) remain a major challenge. The consequences of changing the amount of Rubisco present in leaves have been investigated by the use of antisense constructs. The manipulation of genes encoding Rubisco activase has provided a means to investigate the regulation of Rubisco activity.
Increasing crop yields to ensure food security is a major challenge. Mutagenesis is an important tool in crop improvement and is free of the regulatory restrictions imposed on genetically modified organisms. The forward genetic approach enables the identification of improved or novel phenotypes that can be exploited in conventional breeding programmes. Powerful reverse genetic strategies that allow the detection of induced point mutations in individuals of the mutagenized populations can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for plant breeding. This review briefly discusses recent advances in the detection of mutants and the potential of mutagenesis for crop improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.