Context. Optical high-resolution spectra of five central stars of planetary nebulae (CSPN) in the Galactic bulge have been obtained with Keck/HIRES in order to derive their parameters. Since the distance of the objects is quite well known, such a method has the advantage that stellar luminosities and masses can in principle be determined without relying on theoretical relations between both quantities. Aims. By alternatively combining the results of our spectroscopic investigation with evolutionary tracks, we obtain so-called spectroscopic distances, which can be compared with the known (average) distance of the bulge-CSPN. This offers the possibility to test the validity of model atmospheres and present date post-AGB evolution. Methods. We analyze optical H/He profiles of five Galactic bulge CSPN (plus one comparison object) by means of profile fitting based on state of the art non-LTE modeling tools, to constrain their basic atmospheric parameters (T eff , log g, helium abundance and wind strength). Masses and other stellar radius dependent quantities are obtained from both the known distances and from evolutionary tracks, and the results from both approaches are compared. Results. The major result of the present investigation is that the derived spectroscopic distances depend crucially on the applied reddening law. Assuming either standard reddening or values based on radio-Hβ extinctions, we find a mean distance of 9.0 ± 1.6 kpc and 12.2 ± 2.1 kpc, respectively. An "average extinction law" leads to a distance of 10.7 ± 1.2 kpc, which is still considerably larger than the Galactic center distance of 8 kpc. In all cases, however, we find a remarkable internal agreement of the individual spectroscopic distances of our sample objects, within ±10% to ±15% for the different reddening laws. Conclusions. Due to the uncertain reddening correction, the analysis presented here cannot yet be regarded as a consistency check for our method, and a rigorous test of the CSPN evolution theory becomes only possible if this problem has been solved.
Aims. The aim of this work is to verify whether turbulent magnetic reconnection can provide the additional energy input required to explain the up to now only poorly understood ionization mechanism of the diffuse ionized gas (DIG) in galaxies and its observed emission line spectra. Methods. We use a detailed non-LTE radiative transfer code that does not make use of the usual restrictive gaseous nebula approximations to compute synthetic spectra for gas at low densities. Excitation of the gas is via an additional heating term in the energy balance as well as by photoionization. Numerical values for this heating term are derived from three-dimensional resistive magnetohydrodynamic two-fluid plasma-neutral-gas simulations to compute energy dissipation rates for the DIG under typical conditions. Results. Our simulations show that magnetic reconnection can liberate enough energy to by itself fully or partially ionize the gas. However, synthetic spectra from purely thermally excited gas are incompatible with the observed spectra; a photoionization source must additionally be present to establish the correct (observed) ionization balance in the gas.
Context. In type Ia supernova (SN Ia) envelopes a huge number of lines of different elements overlap within their thermal Doppler widths, and this problem is exacerbated by the circumstance that up to 20% of these lines can have a line optical depth greater than 1. The stagnation of the lambda iteration in such optically thick cases is one of the fundamental physical problems inherent in the iterative solution of the non-LTE problem, and the failure of a lambda iteration to converge is a point of crucial importance whose physical significance must be understood completely. Aims. We discuss a general problem related to radiative transfer under the physical conditions of supernova ejecta that involves a failure of the usual non-LTE iteration scheme to converge when multiple strong opacities belonging to different physical transitions come together, similar to the well-known situation where convergence is impaired even when only a single process attains large optical depths. The convergence problem is independent of the chosen frequency and depth grid spacing, independent of whether the radiative transfer is solved in the comoving or observer's frame, and independent of whether a common complete-linearization scheme or a conventional accelerated lambda iteration (ALI) is used. The problem appears when all millions of line transitions required for a realistic description of SN Ia envelopes are treated in the frame of a comprehensive non-LTE model. The only way out of this problem is a complete-linearization approach which considers all ions of all elements simultaneously, or an adequate generalization of the established ALI technique which accounts for the mutual interaction of the strong spectral lines of different elements and which thereby unfreezes the "stuck" state of the iteration. Methods. The physics of the atmospheres of SN Ia are strongly affected by the high-velocity expansion of the ejecta, dominating the formation of the spectra at all wavelength ranges. Thus, hydrodynamic explosion models and realistic model atmospheres that take into account the strong deviation from local thermodynamic equilibrium are necessary for the synthesis and analysis of the spectra. In this regard one of the biggest challenges we have found in the modeling of the radiative transfer in SN Ia is the fact that the radiative energy in the UV has to be transferred only via spectral lines into the optical regime in order to be able to leave the ejecta. However, convergence of the model toward a state where this is possible is impaired when using the standard procedures. We report on improvements in our approach of computing synthetic spectra for SN Ia with respect to (i) an improved and sophisticated treatment of many thousands of strong lines that interact intricately with the "pseudo-continuum" formed entirely by Doppler-shifted spectral lines, (ii) an improved and expanded atomic database, and (iii) the inclusion of energy deposition within the ejecta arising from the radioactive decay of mostly 56 Ni and 56 Co. Results....
Context. Type Ia supernovae (SN Ia) have become an invaluable cosmological tool because their exceptional brightness makes them observable even at very large distances (up to redshifts around z ≈ 1). To investigate possible systematic differences between local and distant SN Ia requires detailed models whose synthetic spectra can be compared to observations and in which the solution of the radiative transfer is a key ingredient. One commonly employed method is the Feautrier scheme, which is generally very robust but can lead to wrong results under certain conditions that frequently occur when modeling supernova ejecta or even the radiatively driven expanding atmospheres of hot stars. Aims. We attempt to improve the procedure we have developed for simulating the radiative transfer of metal-rich, intermediate-and low-density, line-dominated atmospheres to allow the method to be applied successfully even under conditions of high expansion velocities. Methods. We use a sophisticated model atmosphere code that considers the non-LTE effects and large velocity gradients that strongly affect the physics of SN Ia atmospheres at all wavelengths to simulate the formation of SN Ia spectra by the thousands of strong spectral lines that intricately interact with the "pseudo-continuum" formed entirely by these Doppler-shifted lines themselves. We focus on investigating the behavior of the Feautrier scheme under these conditions. Results. Synthetic spectra of SN Ia, a complex product of computer models replicating numerous physical processes that determine the conditions of matter and radiation in the ejecta, are affected by large spatial jumps of the line-dominated opacities and source functions for which the application of even well established methods may harbor certain pitfalls. We analyse the conditions that can lead to a breakdown of conventional procedures and we derive a modified description that yields more accurate results in the given circumstances for the Feautrier radiative transfer solver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.