Aedes albopictus (Skuse) and Ae. japonicus (Theobald) are important container-inhabiting mosquitoes that transmit disease agents, outcompete native species, and continue to expand their range in the United States. Both species deposit eggs in natural and artificial containers and thrive in peridomestic environments. The goal of our study was to examine the types and characteristics of containers that are most productive for these species in the northeastern United States. In total, 306 containers were sampled in urban, suburban, and rural areas of New Jersey. Multiple biotic and abiotic factors were recorded in an attempt to identify variables associated with the productivity of each species. Based on pupal abundance and density of container types, results showed that tires, trash cans, and planter dishes were the most important containers for Ae. albopictus, while planter dishes were the most important containers for Ae. japonicus. Container color (black and gray), material (rubber), and type (tires) were correlated with species presence for Ae. albopictus and Ae. japonicus. These factors may play a role in the selection of oviposition sites by female mosquitoes or in the survival of their progeny. Differences in species composition and abundance were detected between areas classified as urban, suburban, and rural. In urban and suburban areas, Ae. albopictus was more abundant in container habitats than Ae. japonicus; however, Ae. japonicus was more abundant in rural areas, and when water temperatures were below 14 degrees C. Our results suggest many variables can influence the presence of Ae. albopictus and Ae. japonicus in container habitats in northeastern United States.
We sought to visually enhance the attractiveness of a standard black ovitrap routinely used in surveillance of the Asian tiger mosquito, Aedes albopictus, and now being used as lethal ovitraps in Ae. aegypti dengue control programs. Black plastic drinking cups (ovitraps) were visually altered to offer field populations of gravid female Ae. albopictus 6 different oviposition site choices. Trials were conducted at 3 field locations in Gainesville, Orange Park, and Jacksonville, FL, during July-August 2009. A black glossy cup served as the control and was tested against 5 cup choices consisting of white, blue, orange, or black-and-white contrasting patterns (checkered or vertically striped). Means (SE) of eggs collected over 6 wk for each choice were: black 122.53 (9.63) > blue 116.74 (10.74) > checkered 101.84 (9.53) > orange 97.15 (7.95) > striped 84.62 (8.17) > white 81.84 (8.74). Black ovitraps outperformed competing colored and contrasting patterned ovicups with respect to choice from gravid Ae. albopictus seeking artificial oviposition sites.
Mosquitoes of various species mate in swarms comprised of tens of thousands of flying males. In this study, we examined Aedes aegypti swarming behavior and identified associated chemical cues. Novel evidence is provided that Ae. aegypti females aggregate by means of olfactory cues, such as aggregation pheromones. Isolation of Ae. aegypti aggregation pheromones was achieved by aeration of confined mosquitoes and collection of associated volatiles by glass filters. The collected volatiles were identified through gas chromatography mass spectrometry (GCMS). Three aggregation pheromones were collected and identified as 2,6,6-trimethylcyclohex-2-ene-1,4-dione (ketoisophorone) (CAS# 1125-21-9, t R = 18.75), 2,2,6-trimethylcyclohexane-1,4-dione (the saturated analog of ketoisophorone) (CAS# 20547-99-3, t R = 20.05), and 1-(4-ethylphenyl) ethanone (CAS# 937-30-4, t R = 24.22). Our biological studies revealed that the identified compounds stimulated mosquito behavior under laboratory conditions. The mechanism of mosquito swarm formation is discussed in light of our behavioral study findings. A preliminary field trial demonstrated the potential application of the isolated aggregation pheromones in controlling Ae. aegypti. Journal of Vector Ecology 39 (2): 347-354. 2014.
Effective entomological surveillance planning stresses a careful consideration of methodology, trapping technologies, and analysis techniques. Herein, the basic principles and technological components of arthropod surveillance plans are described, as promoted in the symposium "Advancements in arthropod monitoring technology, techniques, and analysis" presented at the 58th annual meeting of the Entomological Society of America in San Diego, CA. Interdisciplinary examples of arthropod monitoring for urban, medical, and veterinary applications are reviewed. Arthropod surveillance consists of the three components: 1) sampling method, 2) trap technology, and 3) analysis technique. A sampling method consists of selecting the best device or collection technique for a specific location and sampling at the proper spatial distribution, optimal duration, and frequency to achieve the surveillance objective. Optimized sampling methods are discussed for several mosquito species (Diptera: Culicidae) and ticks (Acari: Ixodidae). The advantages and limitations of novel terrestrial and aerial insect traps, artificial pheromones and kairomones are presented for the capture of red flour beetle (Coleoptera: Tenebrionidae), small hive beetle (Coleoptera: Nitidulidae), bed bugs (Hemiptera: Cimicidae), and (Diptera: Ceratopogonidae) respectively. After sampling, extrapolating real world population numbers from trap capture data are possible with the appropriate analysis techniques. Examples of this extrapolation and action thresholds are given for termites (Isoptera: Rhinotermitidae) and red flour beetles.
The increased cases of cutaneous leishmaniasis vectored by Phlebotomus papatasi (Scopoli) in Libya have driven considerable effort to develop a predictive model for the potential geographical distribution of this disease. We collected adult P. papatasi from 17 sites in Musrata and Yefern regions of Libya using four different attraction traps. Our trap results and literature records describing the distribution of P. papatasi were incorporated into a MaxEnt algorithm prediction model that used 22 environmental variables. The model showed a high performance (AUC = 0.992 and 0.990 for training and test data, respectively). High suitability for P. papatasi was predicted to be largely confined to the coast at altitudes <600 m. Regions south of 300 degrees N latitude were calculated as unsuitable for this species. Jackknife analysis identified precipitation as having the most significant predictive power, while temperature and elevation variables were less influential. The National Leishmaniasis Control Program in Libya may find this information useful in their efforts to control zoonotic cutaneous leishmaniasis. Existing records are strongly biased toward a few geographical regions, and therefore, further sand fly collections are warranted that should include documentation of such factors as soil texture and humidity, land cover, and normalized difference vegetation index (NDVI) data to increase the model's predictive power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.