Abstract. Embedded microcontroller applications often experience multiple limiting constraints: memory, speed, and for a wide range of portable devices, power. Applications requiring encrypted data must simultaneously optimize the block cipher algorithm and implementation choice against these limitations. To this end we investigate block cipher implementations that are optimized for speed and energy efficiency, the primary metrics of devices such as the MSP430 where constrained memory resources nevertheless allow a range of implementation choices. The results set speed and energy efficiency records for the MSP430 device at 132 cycles/byte and 2.18 µJ/block for AES-128 and 103 cycles/byte and 1.44 µJ/block for equivalent block and key sizes using the lightweight block cipher SPECK. We provide a comprehensive analysis of size, speed, and energy consumption for 24 different variations of AES and 20 different variations of SPECK, to aid system designers of microcontroller platforms optimize the memory and energy usage of secure applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.