SUMMARY Stromal communication with cancer cells can influence treatment response. We show that stromal and breast cancer (BrCa) cells utilize paracrine and juxtacrine signaling to drive chemotherapy and radiation resistance. Upon heterotypic interaction, exosomes are transferred from stromal to BrCa cells. RNA within exosomes, which are largely non-coding transcripts and transposable elements, stimulates the pattern recognition receptor RIG-I to activate STAT1-dependent anti-viral signaling. In parallel, stromal cells also activate NOTCH3 on BrCa cells. The paracrine anti-viral and juxtacrine NOTCH3 pathways converge as STAT1 facilitates transcriptional responses to NOTCH3 and expands therapy resistant tumor-initiating cells. Primary human and/or mouse BrCa analysis support the role of anti-viral/NOTCH3 pathways in NOTCH signaling and stroma-mediated resistance, which is abrogated by combination therapy with gamma secretase inhibitors. Thus, stromal cells orchestrate an intricate cross-talk with BrCa cells by utilizing exosomes to instigate anti-viral signaling. This expands BrCa subpopulations adept at resisting therapy and re-initiating tumor growth.
The aim of our study was to investigate the osteogenic potential of subcultured rat bone marrow cells. Rat bone marrow (RBM) cells were cultured with or without dexamethasone. Subsequently, osteogenic differentiation and expression was studied. When cells were cultured continuously in the presence of dexamethasone, cultures initially showed high alkaline phosphatase expression and abundant mineralization. Expression of differentiation markers decreased with passaging. After cells were passaged three times, no alkaline phosphatase activity and calcification were found. Primary cells cultured without dexamethasone showed low alkaline phosphatase and no calcification, and remained fibroblast-like. When these cells were subcultured in the presence of dexamethasone, the cells did show osteogenic differentiation. Nevertheless, this occurred at a significant lower level than with cells continuously cultured with dexamethasone. In addition, no differentiation was found after second passage. Our results indicate that subcultured undifferentiated RBM cells show osteogenic differentiation after addition of dexamethasone. Expression of alkaline phosphatase and mineralization is higher in cells continuously supplemented with dexamethasone. Still, even when dexamethasone is added continuously, RBM cells loose their osteogenic potential after several passages. Therefore, we conclude that subculture of undifferentiated rat bone marrow cells results in the loss of osteogenic potential of these cells.
In this study, we examined the effect of calcium phosphate (Ca-P) coating crystallinity and of surface roughness on growth and differentiation of osteogenic cells. Grit-blasted titanium substrates were provided with Ca-P coatings of different crystallinities. Rat bone marrow (RBM) cells were cultured on these substrates and on noncoated rough and smooth titanium substrates. After specific culture times, expression of osteogenic markers by the cells was studied. Cells cultured on crystalline coatings and on titanium substrates proliferate, express alkaline phosphatase, osteocalcin (OC), and show mineralization of the extracellular matrix. Rough titanium substrates only express low OC levels. Significantly higher OC levels were expressed on smooth titanium, and even higher levels on the crystalline Ca-P coating. No difference was found in calcification between smooth and rough titanium. The crystalline coating showed more calcification than the titanium substrates. When substrates without cells were incubated in medium, precipitation of calcium was found. On the titanium substrates, this precipitate disappeared after prolonged incubation. The precipitate on the crystalline coating was stable and increased with longer incubation times. On the amorphous coatings, no proliferation and differentiation of RBM cells were found. After longer culture periods, substrates showed extensive dissolution. Cells on the amorphous coatings did express high levels of prostaglandin E2. In contrast, prostaglandin E2 expression was low for the other substrates. We conclude that crystalline Ca-P coatings stimulate differentiation of RBM cells, to a higher extent than titanium substrates. Surface roughness only has a limited effect on phenotype expression of the cells. In contrast, thin amorphous coatings show negative effects on the growth and differentiation of cultured RBM cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.