Abstract. Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios – using the reduced-complexity climate–carbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135 ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non-CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350 ppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737 ppm and reaches concentrations beyond 2000 ppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66 % for the present day to roughly 68 % to 85 % by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the March–April–May (MAM) season provide a regional warming in higher northern latitudes of up to 0.4 K over the historical period, latitudinally averaged of about 0.1 K, which we estimate to be comparable to the upper bound (∼5 % level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a “hockey-stick” upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to – ranging from multiple degrees of future warming on the one side to approximately 1.5 ∘C warming on the other.
[1] The TransCom 3 experiment was begun to explore the estimation of carbon sources and sinks via the inversion of simulated tracer transport. We build upon previous TransCom work by presenting the seasonal inverse results which provide estimates of carbon flux for 11 land and 11 ocean regions using 12 atmospheric transport models. The monthly fluxes represent the mean seasonal cycle for the 1992 to 1996 time period. The spread among the model results is larger than the average of their estimated flux uncertainty in the northern extratropics and vice versa in the tropical regions. In the northern land regions, the model spread is largest during the growing season. Compared to a seasonally balanced biosphere prior flux generated by the CASA model, we find significant changes to the carbon exchange in the European region with greater growing season net uptake which persists into the fall months. Both Boreal North America and Boreal Asia show lessened net uptake at the onset of the growing season with Boreal Asia also exhibiting greater peak growing season net uptake. Temperate Asia shows a dramatic springward shift in the peak timing of growing season net uptake relative to the neutral CASA flux while Temperate North America exhibits a broad flattening of the seasonal cycle. In most of the ocean regions, the inverse fluxes exhibit much greater seasonality than that implied by the DpCO 2 derived fluxes though this may be due, in part, to misallocation of adjacent land flux. In the Southern Ocean, the austral spring and fall exhibits much less carbon uptake than implied by DpCO 2 derived fluxes. Sensitivity testing indicates that the inverse estimates are not overly influenced by the prior flux choices. Considerable agreement exists between the model mean, annual mean results of this study and that of the previously published TransCom annual mean inversion. The differences that do exist are in poorly constrained regions and tend to exhibit compensatory fluxes in order to match the global mass constraint. The differences between the estimated fluxes and the prior model over the northern land regions could be due to the prior model respiration response to temperature. Significant phase differences, such as that in the Temperate Asia region, may be due to the limited observations for that region. Finally, differences in the boreal land regions between the prior model and the estimated fluxes may be a reflection of the timing of spring thaw and an imbalance in respiration versus photosynthesis.
Spatial and temporal variations of atmospheric CO 2 concentrations contain information about surface sources and sinks, which can be quantitatively interpreted through tracer transport inversion. Previous CO 2 inversion calculations obtained differing results due to different data, methods and transport models used. To isolate the sources of uncertainty, we have conducted a set of annual mean inversion experiments in which 17 different transport models or model variants were used to calculate regional carbon sources and sinks from the same data with a standardized method. Simulated transport is a significant source of uncertainty in these calculations, particularly in the response to prescribed "background" fluxes due to fossil fuel combustion, a balanced terrestrial biosphere, and air-sea gas exchange. Individual model-estimated fluxes are often a direct reflection of their response to these background fluxes. Models that generate strong surface maxima near background exchange locations tend to require larger uptake near those locations. Models with weak surface maxima tend to have less uptake in those same regions but may infer small sources downwind. In some cases, individual model flux estimates cannot be analyzed through simple relationships to background flux responses but are
Abstract. This paper explores the consequences of resolution of surface fluxes on synthesis inversions of carbon dioxide. Synthesis inversion divides the Earth's surface into a set of regions and solves for the magnitudes of fluxes from these regions. The regions are generally quite large. By considering an inversion performed at the resolution of the underlying transport model we show that the aggregation to large regions can cause significant differences in the final results, with errors of the same order of magnitude as the fluxes themselves. Using a simple model, we derive an algorithm to reduce this error. This algorithm accounts for the extra data uncertainty that is caused by uncertainty in the small-scale flux components. In the spatial synthesis inversion this extra data uncertainty reaches a maximum value of 3.5 ppmv. Accounting for it can halve the aggregation error. We provide suggestions for dealing with this problem when high-resolution inversions are not feasible.
This paper presents an attempt to recover the space–time structure of fluxes of CO2 to the atmosphere over the period 1980–1995 from atmospheric concentration and isotopic composition measurements. The technique used is Bayesian synthesis inversion in which sources are aggregated into large regions and their strengths adjusted to match observed concentrations. The sources are constrained by prior estimates based on a priori knowledge. The input data are atmospheric CO2 concentration measurements from the NOAA/CMDL network, 13CO2 composition and O2/N2 ratios measured at Cape Grim, Tasmania by CSIRO Atmospheric Research. The primary findings are a relatively large long‐term mean ocean uptake of CO2, and seasonal fluxes over land with similar integrated magnitude, but smaller peak amplitude, compared with those derived by Fung and co‐workers. Predicted interannual variability is smaller than reported in previous studies. The largest contributor is the oceanic tropics where fluxes vary on the time scale of the southern oscillation. There is evidence of longer time‐scale variation in land uptake. Increases in ocean uptake and northern land uptake in the early 1990s are consistent with a response to the Mt. Pinatubo eruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.