Silicon-plasmonics enables the fabrication of active photonic circuits in CMOS technology with unprecedented operation speed and integration density. Regarding applications in chip-level optical interconnects, fast and efficient plasmonic photodetectors with ultrasmall footprints are of special interest. A particularly promising approach to silicon-plasmonic photodetection is based on internal photoemission (IPE), which exploits intrinsic absorption in plasmonic waveguides at the metal-dielectric interface. However, while IPE plasmonic photodetectors have already been demonstrated, their performance is still far below that of conventional high-speed photodiodes. In this paper, we demonstrate a novel class of IPE devices with performance parameters comparable to those of state-of-the-art photodiodes while maintaining footprints below 1 μm 2 . The structures are based on asymmetric metal-semiconductormetal waveguides with a width of less than 75 nm. We measure record-high sensitivities of up to 0.12 A/W at a wavelength of 1550 nm. The detectors exhibit opto-electronic bandwidths of at least 40 GHz. We demonstrate reception of on-off keying data at rates of 40 Gbit/s.
SU8 submicron structures with an aspect ratio of more than 50 are made by soft X-ray lithography using modified spectra of the synchrotron radiation at the ANKA LITHO-1 beamline, which includes a chromium mirror. The X-ray spectrum is additional shaped by a beam stop and a filter to a narrow band in order to reduce the influence of diffraction and photoelectrons. The exposure determination is based on the measured threshold doses for used SU-8 resist layers as well as on the calculated diffractive distribution of an absorbed power. Post-exposure bake of the resist is performed at low temperature and low pressure to avoid changes of the structural size because of shrinkage due to temperature changes and to eliminate a ''skin'' layer at the top of the resist. SU8 structures with lateral dimensions of 1 lm and heights from 50 to 80 lm have been fabricated defect free with the optimized process.
Optically excited organic semiconductor distributed feedback (DFB) lasers enable efficient lasing in the visible spectrum. Here, we report on the rapid and parallel fabrication of DFB lasers via transferring a nanograting structure from a flexible mold onto an unstructured film of the organic gain material. This geometrically well-defined structure allows for a systematic investigation of the laser threshold behavior. The laser thresholds for these devices show a strong dependence on the pump spot diameter. This experimental finding is in good qualitative agreement with calculations based on coupled-wave theory. With further investigations on various DFB laser geometries prepared by different routes and based on different organic gain materials, we found that these findings are quite general. This is important for the comparison of threshold values of various devices characterized under different excitation areas. Weimann, J. Wang, and P. Hinze, "Laser threshold reduction in an all-spiro guest-host system," Appl. Phys. Lett. 85(10), 1659-1661 (2004). 14. X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U.Lemmer, "Ink-jet-printed organic semiconductor distributed feedback laser," Appl. Phys. Express 5(7), 072101
We propose multi-periodic nanostructures yielded by superposition of multiple binary gratings for wide control over photon emission in thin-film devices. We present wavelength- and angle-resolved photoluminescence measurements of multi-periodically nanostructured organic light-emitting layers. The spectral resonances are determined by the periodicities of the individual gratings. By varying component duty cycles we tune the relative intensity of the main resonance from 12% to 82%. Thus, we achieve simultaneous control over the spectral resonance positions and relative intensities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.