Phase-contrast imaging using conventional polychromatic x-ray sources and grating interferometers has been developed and demonstrated for x-ray energies up to 60 keV. Here, we conduct an analysis of possible grating configurations for this technique and present further geometrical arrangements not considered so far. An inverse interferometer geometry is investigated that offers significant advantages for grating fabrication and for the application of the method in computed tomography ͑CT͒ scanners. We derive and measure the interferometer's angular sensitivity for both the inverse and the conventional configuration as a function of the sample position. Thereby, we show that both arrangements are equally sensitive and that the highest sensitivity is obtained, when the investigated object is close to the interferometer's phase grating. We also discuss the question whether the sample should be placed in front of or behind the phase grating. For CT applications, we propose an inverse geometry with the sample position behind the phase grating.
Human brain tissue belongs to the most impressive and delicate three-dimensional structures in nature. Its outstanding functional importance in the organism implies a strong need for brain imaging modalities. Although magnetic resonance imaging provides deep insights, its spatial resolution is insufficient to study the structure on the level of individual cells. Therefore, our knowledge of brain microstructure currently relies on two-dimensional techniques, optical and electron microscopy, which generally require severe preparation procedures including sectioning and staining. X-ray absorption microtomography yields the necessary spatial resolution, but since the composition of the different types of brain tissue is similar, the images show only marginal contrast. An alternative to absorption could be X-ray phase contrast, which is known for much better discrimination of soft tissues but requires more intricate machinery. In the present communication, we report an evaluation of the recently developed X-ray grating interferometry technique, applied to obtain phase-contrast as well as absorption-contrast synchrotron radiation-based microtomography of human cerebellum. The results are quantitatively compared with synchrotron radiationbased microtomography in optimized absorption-contrast mode. It is demonstrated that grating interferometry allows identifying besides the blood vessels, the stratum moleculare, the stratum granulosum and the white matter. Along the periphery of the stratum granulosum, we have detected microstructures about 40 mm in diameter, which we associate with the Purkinje cells because of their location, size, shape and density. The detection of individual Purkinje cells without the application of any stain or contrast agent is unique in the field of computed tomography and sets new standards in non-destructive three-dimensional imaging.
Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.
SU8 submicron structures with an aspect ratio of more than 50 are made by soft X-ray lithography using modified spectra of the synchrotron radiation at the ANKA LITHO-1 beamline, which includes a chromium mirror. The X-ray spectrum is additional shaped by a beam stop and a filter to a narrow band in order to reduce the influence of diffraction and photoelectrons. The exposure determination is based on the measured threshold doses for used SU-8 resist layers as well as on the calculated diffractive distribution of an absorbed power. Post-exposure bake of the resist is performed at low temperature and low pressure to avoid changes of the structural size because of shrinkage due to temperature changes and to eliminate a ''skin'' layer at the top of the resist. SU8 structures with lateral dimensions of 1 lm and heights from 50 to 80 lm have been fabricated defect free with the optimized process.
SU-8 layers of different thickness that were formed by spinning and soft baking or a casting process with a solvent content of not more than 4% were used for experimental investigation of deep UV lithography using modified radiation of a mercury lamp. The specific absorbance of the SU-8 layers have been measured in dependence on the wavelength to calculate the power of the absorbed radiation as a function of depth in the resist layer. The resist layers which were formed on a photomask have been exposed with a variation of exposure dose to study the residual thickness of the resist. There are threshold exposures for the formation of insoluble SU-8 resist layer and for the disappearance of shrinkage of the resist layer, which depends on the size of the irradiated area, on microstructure topology and on the resist thickness for fixed parameters of pre-and post-exposure baking. It has been shown that exact filtration of a lowintensity band of exposure radiation at 334 nm allows to reduce strong diffraction distortion in the upper layer of the resist. Microstructures with an aspect ratio of 25 in a SU-8 resist layer of 1 mm thickness have been obtained using a 100 lm thick SU-8 resist layer as a filter for the UV radiation and with optimal dose of exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.