The innate immune system recognizes nucleic acids during infection and tissue damage. Whereas viral RNA is detected by endosomal toll-like receptors (TLR3, TLR7, TLR8) and cytoplasmic RIG-I and MDA5, endosomal TLR9 and cytoplasmic DAI bind DNA, resulting in the activation of nuclear factor-kappaB and interferon regulatory factor transcription factors. However, viruses also trigger pro-inflammatory responses, which remain poorly defined. Here we show that internalized adenoviral DNA induces maturation of pro-interleukin-1beta in macrophages, which is dependent on NALP3 and ASC, components of the innate cytosolic molecular complex termed the inflammasome. Correspondingly, NALP3- and ASC-deficient mice display reduced innate inflammatory responses to adenovirus particles. Inflammasome activation also occurs as a result of transfected cytosolic bacterial, viral and mammalian (host) DNA, but in this case sensing is dependent on ASC but not NALP3. The DNA-sensing pro-inflammatory pathway functions independently of TLRs and interferon regulatory factors. Thus, in addition to viral and bacterial components or danger signals in general, inflammasomes sense potentially dangerous cytoplasmic DNA, strengthening their central role in innate immunity.
Previous investigations of the core gene regulatory circuitry that controls embryonic stem cell (ESC) pluripotency have largely focused on the roles of transcription, chromatin and non-coding RNA regulators1–3. Alternative splicing (AS) represents a widely acting mode of gene regulation4–8, yet its role in regulating ESC pluripotency and differentiation is poorly understood. Here, we identify the Muscleblind-like RNA binding proteins, MBNL1 and MBNL2, as conserved and direct negative regulators of a large program of cassette exon AS events that are differentially regulated between ESCs and other cell types. Knockdown of MBNL proteins in differentiated cells causes switching to an ESC-like AS pattern for approximately half of these events, whereas over-expression of MBNL proteins in ESCs promotes differentiated cell-like AS patterns. Among the MBNL-regulated events is an ESC-specific AS switch in the forkhead family transcription factor FOXP1 that controls pluripotency9. Consistent with a central and negative regulatory role for MBNL proteins in pluripotency, their knockdown significantly enhances the expression of key pluripotency genes and the formation of induced pluripotent stem cells (iPSCs) during somatic cell reprogramming.
Helper-dependent adenovirus (HD-Ad
Remodeling of cortical connectivity is thought to allow initially hippocampus-dependent memories to be expressed independently of the hippocampus at remote time points. Consistent with this, consolidation of a contextual fear memory is associated with dendritic spine growth in neurons of the anterior cingulate cortex (aCC). To directly test whether such cortical structural remodeling is necessary for memory consolidation, we disrupted spine growth in the aCC at different times following contextual fear conditioning in mice. We took advantage of previous studies showing that the transcription factor myocyte enhancer factor 2 (MEF2) negatively regulates spinogenesis both in vitro and in vivo. We found that increasing MEF2-dependent transcription in the aCC during a critical posttraining window (but not at later time points) blocked both the consolidation-associated dendritic spine growth and subsequent memory expression. Together, these data strengthen the causal link between cortical structural remodeling and memory consolidation and, further, identify MEF2 as a key regulator of these processes.structural plasticity | remote memory | viral vector I n experimental animals, damage to the hippocampus disproportionately impacts recently acquired memories, with relative sparing of remote memories (1-8). Such observations have led to the idea that the hippocampus is transiently required for memory expression, with remote memory expression being exclusively dependent on the cortex (9). According to one model (10), posttraining hippocampal activity coordinates reactivation of memory traces in the cortex. This reactivation leads to the remodeling of cortical connections, allowing the memory to eventually be expressed independently of the hippocampus. A recent study in mice (5) provided correlative evidence for posttraining remodeling of neurons in the anterior cingulate cortex (aCC), a subregion of the prefrontal cortex that plays an essential role in remote memory expression (11). Increases in dendritic spine density on layer 2/3 pyramidal aCC neurons were observed 1 mo, but not 1 d, following contextual fear conditioning (5). As layer 2/3 pyramidal neurons send and receive long-range cortical connections (12), such changes may contribute to increased functional connectivity between the aCC and other cortical areas important for remote memory expression (13,14). However, whether this increase in aCC spine density is necessary for memory consolidation is not known. To test this, it would be necessary to evaluate whether preventing posttraining spinogenesis, specifically in this region, disrupts memory consolidation.The transcription factor myocyte enhancer factor 2 (MEF2) negatively regulates spinogenesis in an activity-dependent manner and therefore provides a tool to address this question. For example, increasing MEF2 function decreases the number of dendritic spines and excitatory synapses in vitro (15) and blocks increases in spine density normally observed following repeated cocaine administration in rat medium spiny...
Memory formation is thought to be mediated by dendritic-spine growth and restructuring. Myocyte enhancer factor 2 (MEF2) restricts spine growth in vitro, suggesting that this transcription factor negatively regulates the spine remodeling necessary for memory formation. Here we show that memory formation in adult mice was associated with changes in endogenous MEF2 levels and function. Locally and acutely increasing MEF2 function in the dentate gyrus blocked both learning-induced increases in spine density and spatial-memory formation. Increasing MEF2 function in amygdala disrupted fear-memory formation. We rescued MEF2-induced memory disruption by interfering with AMPA receptor endocytosis, suggesting that AMPA receptor trafficking is a key mechanism underlying the effects of MEF2. In contrast, decreasing MEF2 function in dentate gyrus and amygdala facilitated the formation of spatial and fear memory, respectively. These bidirectional effects indicate that MEF2 is a key regulator of plasticity and that relieving the suppressive effects of MEF2-mediated transcription permits memory formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.