Fractalkine is the only as yet known member of a novel class of chemokines. Besides its novel Cys-X-X-X-Cys motif, fractalkine exhibits features which have not been described for any other member of the chemokine family, including its unusual size (397 amino acids human, 395 mouse) and the possession of a transmembrane anchor, from which a soluble form may be released by extracellular cleavage. This report demonstrates the abundant mRNA and fractalkine protein expression in neuronal cells. The neuronal expression of fractalkine mRNA is unaffected by experimentally induced inflammation of central nervous tissue.z 1998 Federation of European Biochemical Societies.
Immunization with dendritic cells (DCs) transfected with genes encoding tumor-associated antigens (TAAs) is a highly promising approach to cancer immunotherapy. We have developed a system, using complexes of plasmid DNA expression constructs with the cationic peptide CL22, that transfects human monocyte-derived DCs much more efficiently than alternative nonviral agents. After CL22 transfection, DCs expressing antigens stimulated autologous T cells in vitro and elicited primary immune responses in syngeneic mice, in an antigen-specific manner. Injection of CL22-transfected DCs expressing a TAA, but not DCs pulsed with a TAA-derived peptide, protected mice from lethal challenge with tumor cells in an aggressive model of melanoma. The CL22 system is a fast and efficient alternative to viral vectors for engineering DCs for use in immunotherapy and research.
CD8+ T cells recognize antigenic peptides presented in the context of MHC class I. They play a key role in cellular immunity and are crucial for longterm protective immunity to many infectious diseases. The quest for new and enhanced vaccines requires improved means for identification of relevant antigens and the epitopes present within these. While there are several algorithms available for epitope prediction (all of which work to differing degrees of success), the definition of actual MHC class I-binding epitopes is very reliant on time-consuming and difficult to perform functional assays using often very limited biological material. The iTOPIA assay is quick and easy to perform and determines real-binding to MHC class I molecules. It provides an excellent platform for screening and elimination of potential epitopes and identification of novel epitopes prior to validation with a relevant functional assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.