Context. The interstellar medium is the locus of physical processes affecting the evolution of galaxies which drive or are the result of star formation activity, supermassive black hole growth, and feedback. The resulting physical conditions determine the observable chemical abundances that can be explored through molecular emission observations at millimeter and submillimeter wavelengths. Aims. Our goal is to unveiling the molecular richness of the central region of the prototypical nearby starburst galaxy NGC 253 at an unprecedented combination of sensitivity, spatial resolution, and frequency coverage. Methods. We used the Atacama Large Millimeter/submillimeter Array (ALMA), covering a nearly contiguous 289 GHz frequency range between 84.2 and 373.2 GHz, to image the continuum and spectral line emission at 1.6″(∼28 pc) resolution down to a sensitivity of 30 − 50 mK. This article describes the ALMA Comprehensive High-resolution Extragalactic Molecular Inventory (ALCHEMI) large program. We focus on the analysis of the spectra extracted from the 15″ (∼255 pc) resolution ALMA Compact Array data. Results. We modeled the molecular emission assuming local thermodynamic equilibrium with 78 species being detected. Additionally, multiple hydrogen and helium recombination lines are identified. Spectral lines contribute 5 to 36% of the total emission in frequency bins of 50 GHz. We report the first extragalactic detections of C2H5OH, HOCN, HC3HO, and several rare isotopologues. Isotopic ratios of carbon, oxygen, sulfur, nitrogen, and silicon were measured with multiple species. Concluison. Infrared pumped vibrationaly excited HCN, HNC, and HC3N emission, originating in massive star formation locations, is clearly detected at low resolution, while we do not detect it for HCO+. We suggest high temperature conditions in these regions driving a seemingly “carbon-rich” chemistry which may also explain the observed high abundance of organic species close to those in Galactic hot cores. The Lvib/LIR ratio was used as a proxy to estimate a 3% contribution from the proto super star cluster to the global infrared emission. Measured isotopic ratios with high dipole moment species agree with those within the central kiloparsec of the Galaxy, while those derived from 13C/18O are a factor of five larger, confirming the existence of multiple interstellar medium components within NGC 253 with different degrees of nucleosynthesis enrichment. The ALCHEMI data set provides a unique template for studies of star-forming galaxies in the early Universe.
Context. Observations of chemical species can provide insights into the physical conditions of the emitting gas however it is important to understand how their abundances and excitation vary within different heating environments. C2H is a molecule typically found in PDR regions of our own Galaxy but there is evidence to suggest it also traces other regions undergoing energetic processing in extragalactic environments. Aims. As part of the ALCHEMI ALMA large program, we map the emission of C2H in the central molecular zone of the nearby starburst galaxy NGC 253 at 1.6″ (28 pc) resolution and characterize it to understand its chemical origins. Methods. We used spectral modeling of the N = 1−0 through N = 4−3 rotational transitions of C2H to derive the C2H column densities towards the dense clouds in NGC 253. We then use chemical modeling, including photodissociation region (PDR), dense cloud, and shock models to investigate the chemical processes and physical conditions that are producing the molecular emission. Results. We find high C2H column densities of ∼1015 cm−2 detected towards the dense regions of NGC 253. We further find that these column densities cannot be reproduced if it is assumed that the emission arises from the PDR regions at the edge of the clouds. Instead, we find that the C2H abundance remains high even in the high visual extinction interior of these clouds and that this is most likely caused by a high cosmic-ray ionization rate.
Molecular abundances are sensitive to the UV photon flux and cosmic-ray ionization rate. In starburst environments, the effects of high-energy photons and particles are expected to be stronger. We examine these astrochemical signatures through multiple transitions of HCO+ and its metastable isomer HOC+ in the center of the starburst galaxy NGC 253 using data from the Atacama Large Millimeter/submillimeter Array large program ALMA Comprehensive High-resolution Extragalactic Molecular inventory. The distribution of the HOC+(1−0) integrated intensity shows its association with “superbubbles,” cavities created either by supernovae or expanding H ii regions. The observed HCO+/HOC+ abundance ratios are ∼10–150, and the fractional abundance of HOC+ relative to H2 is ∼1.5 × 10−11–6 × 10−10, which implies that the HOC+ abundance in the center of NGC 253 is significantly higher than in quiescent spiral arm dark clouds in the Galaxy and the Galactic center clouds. Comparison with chemical models implies either an interstellar radiation field of G 0 ≳ 103 if the maximum visual extinction is ≳5, or a cosmic-ray ionization rate of ζ ≳ 10−14 s−1 (3–4 orders of magnitude higher than that within clouds in the Galactic spiral arms) to reproduce the observed results. From the difference in formation routes of HOC+, we propose that a low-excitation line of HOC+ traces cosmic-ray dominated regions, while high-excitation lines trace photodissociation regions. Our results suggest that the interstellar medium in the center of NGC 253 is significantly affected by energy input from UV photons and cosmic rays, sources of energy feedback.
Context. Measuring isotopic ratios is a sensitive technique used to obtain information on stellar nucleosynthesis and chemical evolution. Aims. We present measurements of the carbon and sulphur abundances in the interstellar medium of the central region of our Galaxy. The selected targets are the +50 km s−1 Cloud and several line-of-sight clouds towards Sgr B2(N). Methods. Towards the +50 km s−1 Cloud, we observed the J = 2–1 rotational transitions of 12C32S, 12C34S, 13C32S, 12C33S, and 13C34S, and the J = 3–2 transitions of 12C32S and 12C34S with the IRAM-30 m telescope, as well as the J = 6–5 transitions of 12C34S and 13C32S with the APEX 12 m telescope, all in emission. The J = 2–1 rotational transitions of 12C32S, 12C34S, 13C32S, and 13C34S were observed with ALMA in the envelope of Sgr B2(N), with those of 12C32S and 12C34S also observed in the line-of-sight clouds towards Sgr B2(N), all in absorption. Results. In the +50 km s−1 Cloud we derive a 12C/13C isotopic ratio of 22.1−2.4+3.3, that leads, with the measured 13C32S/12C34S line intensity ratio, to a 32S/34S ratio of 16.3−2.4+3.0. We also derive the 32S/34S isotopic ratio more directly from the two isotopologues 13C32S and 13C34S, which leads to an independent 32S/34S estimation of 16.3−1.7+2.1 and 17.9 ± 5.0 for the +50 km s−1 Cloud and Sgr B2(N), respectively. We also obtain a 34S/33S ratio of 4.3 ± 0.2 in the +50 km s−1 Cloud. Conclusions. Previous studies observed a decreasing trend in the 32S/34S isotopic ratios when approaching the Galactic centre. Our result indicates a termination of this tendency at least at a galactocentric distance of 130−30+60 pc. This is at variance with findings based on 12C/13C, 14N/15N, and 18O/17O isotope ratios, where the above-mentioned trend is observed to continue right to the central molecular zone. This can indicate a drop in the production of massive stars at the Galactic centre, in the same line as recent metallicity gradient ([Fe/H]) studies, and opens the work towards a comparison with Galactic and stellar evolution models.
We present two-dimensional stellar and gaseous kinematics of the inner 0.7 × 1.2 kpc 2 of the Seyfert 1.5 galaxy ESO 362-G18, derived from optical (4092-7338 Å) spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈170 pc and spectral resolution of 36 km s −1 . ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [O iii] emission shows a fan-shaped extension of ≈ 10 to the SE. We detect the [O iii] doublet, [N ii] and Hα emission lines throughout our FOV. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of ≈137 • and is centred approximately on the continuum peak. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122 • to 139 • , projected velocity amplitudes of the order of 100 km s −1 , and a mean velocity dispersion of 100 km s −1 . A double-Gaussian fit to the [O iii]λ5007 and Hα lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight (LOS) velocities 100-250 km s −1 higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 × 10 −2 M yr −1 in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 × 10 −2 M yr −1 . The total ionized gas mass within ∼84 pc of the nucleus is 3.3 × 10 5 M ; infall velocities of ∼34 km s −1 in this gas would be required to feed both the outflow and SMBH accretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.