[1] The Indo-Gangetic Plain (IGP) encompasses a vast area, (accounting for $21% of the land area of India), which is densely populated (accommodating $40% of the Indian population). Highly growing economy and population over this region results in a wide range of anthropogenic activities. A large number of thermal power plants (most of them coal fed) are clustered along this region. Despite its importance, detailed investigation of aerosols over this region is sparse. During an intense field campaign of winter 2004, extensive aerosol and atmospheric boundary layer measurements were made from three locations: Kharagpur (KGP), Allahabad (ALB), and Kanpur (KNP), within the IGP. These data are used (1) to understand the regional features of aerosols and BC over the IGP and their interdependencies, (2) to compare it with features at locations lying at far away from the IGP where the conditions are totally different, (3) to delineate the effects of mesoscale processes associated with changes in the local atmospheric boundary layer (ABL), (4) to investigate the effects of long-range transport or moving weather phenomena in modulating the aerosol properties as well as the ABL characteristics, and (5) to examine the changes as the season changes over to spring and summer. Our investigations have revealed very high concentrations of aerosols along the IGP, the average mass concentrations (M T ) of total aerosols being in the range 260 to 300 mg m À3 and BC mass concentrations (M B ) in the range 20 to 30 mg m À3 (both $5 to 8 times higher than the values observed at off-IGP stations) during December 2004. Despite, BC constituted about 10% to the total aerosol mass concentration, a value quite comparable to those observed elsewhere over India for this season. The dynamics of the local atmospheric boundary layer (ABL) as well as changes in local emissions strongly influence the diurnal variations of M T and M B , both being inversely correlated with the mixed layer height (Z i ) and the ventilation coefficient (V c ). The share of BC to total aerosols is highest ($12%) during early night and lowest ($4%) in the early morning hours. While an increase in the V c results in a reduction in the concentration almost simultaneously, an increase in Z imax has its most impact on the concentration after $1 day. Accumulation mode aerosols contributed $90% to the aerosol concentration at ALB, $77 % at KGP and 74% at KNP. The BC mass mixing ratio was $10% over all three locations and is comparable to the value reported for Trivandrum, a tropical coastal location in southern India. This indicates presence of submicron aerosols species other than BC (such as sulfate) over KGP and KNP. A cross-correlation analysis showed that the changes in M B at KGP is significantly correlated with those at KNP, located $850 km upwind, and ALB after a delay of $7 days, while no such delay was seen between ALB and KNP. Back trajectory analyses show an enhancement in M B associated with trajectories arriving from west, the farther from to the west they arr...
During the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) over India, high-resolution airborne measurements of the altitude profiles of the mass concentrations (M B ) of aerosol black carbon (BC) were made off Bhubaneswar (BBR, 85.82 • E, 20.25 • N), over northwest Bay of Bengal, in the altitude region upto 3 km. Such high-resolution measurements of altitude profiles of aerosols are done for the first time over India. The profiles showed a near-steady vertical distribution of M B modulated with two small peaks, one at 800 m and the other at ∼ 2000 m. High resolution GPS (Global Positioning System) sonde (Vaisala) measurements around the same region onboard the research vessel Sagar Kanya (around the same time of the aircraft sortie) revealed two convectively well mixed layers, one from ground to ∼ 700 m with an inversion at the top and the other extends from 1200 m to ∼ 2000 m with a second inversion at ∼ 2200 m and a convectively stable region in the altitude range 700-1200 m. The observed peaks in the M B profile are found to be associated with these temperature inversions. In addition, long-range transport from the Indo-Gangetic Plain (IGP) and deserts lying further to the west also influence the vertical profile of BC. Latitudinal variation of M B showed a remarkable land ocean contrast at the 500 m altitude (within the well mixed region) with remarkably lower values over oceans, suggesting the impact of strong sources over the mainland. However, above the ABL (at 1500 m), the latitudinal variations were quite weak, and this appears to be resulting from the impact of long-range transport. Comparison of the altitude profiles of M B over BoB off BBR with those obtained during the earlier occasion over the inland stations of Hyderabad and Kanpur showed similarities above ∼ 500 m, with M B remaining around a steady value of ∼1 μg m −3 . However, large differences are seen within the ABL. Even though the observed M B values are not unusually high, their near constancy in the vertical column will have important implications to radiative forcing.
This paper discusses the observations of the Atmospheric Surface Layer (ASL) parameters during the solar eclipse of August 11th, 1999. Intensive surface layer experiments were conducted at Ahmedabad (23 • 21 N, 72 • 36 E), the western part of India, which was close to the totality path. This rare event provided by nature is utilised to document the surface layer effects during the eclipse period using measurements of high frequency fluctuations of temperature, tri-axial wind components as well as mean parameters such as temperature, humidity, wind speed and subsoil temperature. Analysis showed that during the eclipse period, the turbulence parameters were affected leading to the suppression of the turbulence process, the main dynamic process in the atmospheric boundary layer, while the mean parameters showed variations within the natural variability of the observational period. The spectra of the wind components and temperature indicated decrease in spectral power by one order in magnitude during the eclipse period. The rate of dissipation of turbulent kinetic energy is found to decrease by more than one order during the eclipse period. The stability parameter showed a change from unstable to stable condition during the period of eclipse and back to unstable condition by the end of eclipse. lowing the solar eclipse. Eaton et al (1997) provided evidence for the decrease in refractive index structure parameter and diminishing of the turbulence
[1] Quantitative estimates of the vertical structure and the spatial gradients of aerosol extinction coefficients have been made from airborne lidar measurements across the coastline into offshore oceanic regions along the east and west coasts of India. The vertical structure revealed the presence of strong, elevated aerosol layers in the altitude region of $2À4 km, well above the atmospheric boundary layer (ABL). Horizontal gradients also showed a vertical structure, being sharp with the e À1 scaling distance (D 0H ) as small as $150 km in the well-mixed regions mostly under the influence of local source effects. Above the ABL, where local effects are subdued, the gradients were much shallower ($600-800 km); nevertheless, they were steep compared to the value of $1500À2500 km reported for columnar AOD during winter. The gradients of these elevated layers were steeper over the east coast of India than over the west coast. Near-simultaneous radio sonde (Vaisala, Inc., Finland) ascents made over the northern Bay of Bengal showed the presence of convectively unstable regions, first from surface to $750-1000 m and the other extending from 1750 to 3000 m separated by a stable region in between. These can act as a conduit for the advection of aerosols and favor the transport of continental aerosols in the higher levels (>2 km) into the oceans without entering the marine boundary layer below. Large spatial gradient in aerosol optical and hence radiative impacts between the coastal landmass and the adjacent oceans within a short distance of <300 km (even at an altitude of 3 km) during summer and the premonsoon is of significance to the regional climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.