We report direct force measurements of the formation of a chemical bond. The experiments were performed using a low-temperature atomic force microscope, a silicon tip, and a silicon (111) 7x7 surface. The measured site-dependent attractive short-range force, which attains a maximum value of 2.1 nanonewtons, is in good agreement with first-principles calculations of an incipient covalent bond in an analogous model system. The resolution was sufficient to distinguish differences in the interaction potential between inequivalent adatoms, demonstrating the ability of atomic force microscopy to provide quantitative, atomic-scale information on surface chemical reactivity.
For a fixed 2 μm×2 μm area of a Co/Pt-CoO perpendicular exchange bias system we image the ferromagnetic (FM) domains for various applied fields with 10-nm resolution by magnetic force microscopy (MFM). Using quantitative MFM we measure the local areal density of pinned uncompensated spins (pinUCS) in the antiferromagnetic (AFM) CoO layer and correlate the FM domain structure with the UCS density. Larger applied fields drive the receding domains to areas of proportionally higher pinUCS aligned antiparallel to FM moments. The data confirm that the evolution of the FM domains is determined by the pinUCS in the AFM layer, and also present examples of frustration in the system.
Magnetic force microscopy (MFM) measurements were performed on an exchange-biased CoO/(CoPt) multilayer sample at 7.5 K. Applying an external magnetic field of up to 7 T saturates the ferromagnetic layer and the remaining uncompensated antiferromagnetic spins at the antiferromagnet-ferromagnet interfaces are imaged with high lateral resolution. The coupling between the uncompensated spins and the spins in the ferromagnet are found to be antiferromagnetic. Quantitative analysis of the MFM images revealed that 7% of the spins at the interface are uncompensated and contribute to the exchange biasing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.