Based on symmetry breaking steps under one-pot conditions, simple molybdenum oxide-based building blocks initially assemble to 'giant molecular wheels' in a fast process followed by further slower assembly processes leading stepwise to more complex mesoscopic architectures including spherical ones and finally to those with a size larger than 500 nm.
Reactive hydride composites (RHCs) are very promising hydrogen storage materials for future applications due to their reduced reaction enthalpies and high gravimetric capacities. At present, the materials' functionality is limited by the reaction kinetics. A significant positive influence can be observed with addition of transition-metal-based additives. To understand the effect of these additives, the chemical state and changes during the reaction as well as the microstructural distribution were investigated using x-ray absorption near-edge structure (XANES) spectroscopy and anomalous small-angle x-ray scattering (ASAXS). In this work, zirconium- and vanadium-based additives were added to 2LiBH4-MgH2 composites and 2LiH-MgB2 composites and measured in the vicinity of the corresponding absorption edge. The measurements reveal the formation of finely distributed zirconium diboride and vanadium-based nanoparticles. The potential mechanisms for the observed influence on the reaction kinetics are discussed.
Amphiphilic poly(2‐alkyl‐2‐oxazoline) diblock copolymers of 2‐methyl‐2‐oxazoline (MOx) building the hydrophilic block and either 2‐nonyl‐2‐oxazoline (NOx) for the hydrophobic or 2‐(1H,1H′,2H,2H′‐perfluorohexyl)‐2‐oxazoline (FOx) for the fluorophilic block were synthesized by sequential living cationic polymerization. The polymer amphiphiles form core/shell micelles in aqueous solution as evidenced using small‐angle neutron scattering (SANS). Whereas the diblock copolymer micelles with a hydrophobic NOxn block are spherical, the micelles with the fluorophilic FOxn are slightly elongated, as observed by SANS and TEM. In water, the micelles with fluorophilic and lipophilic cores do not mix, but coexist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.