Volatile element delivery and retention played a fundamental part in Earth's formation and subsequent chemical differentiation. The heavy halogens-chlorine (Cl), bromine (Br) and iodine (I)-are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth's silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth's surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth's dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track with water, supports this requirement, and is consistent with volatile-rich or water-rich late-stage terrestrial accretion.
Abstract-The Novato L6 chondrite fragmental breccia fell in California on 17 October 2012, and was recovered after the Cameras for Allsky Meteor Surveillance (CAMS) project determined the meteor's trajectory between 95 and 46 km altitude. The final fragmentation from 42 to 22 km altitude was exceptionally well documented by digital photographs. The first sample was recovered before rain hit the area. First results from a consortium study of the meteorite's characterization, cosmogenic and radiogenic nuclides, origin, and conditions of the fall are presented. Some meteorites did not retain fusion crust and show evidence of spallation. Before entry, the meteoroid was 35 AE 5 cm in diameter (mass 80 AE 35 kg) with a cosmic-ray exposure age of 9 AE 1 Ma, if it had a one-stage exposure history. A two-stage exposure history is more likely, with lower shielding in the last few Ma. Thermoluminescence data suggest a collision event within the last $ 0.1 Ma. Novato probably belonged to the class of shocked L chondrites that have a common shock age of 470 Ma, based on the U,Th-He age of 420 AE 220 Ma. The measured orbits of Novato, Jesenice, and Innisfree are consistent with a proposed origin of these shocked L chondrites in the Gefion asteroid family, perhaps directly via the 5:2 mean-motion resonance with Jupiter. Novato experienced a stronger compaction than did other L6 chondrites of shockstage S4. Despite this, a freshly broken surface shows a wide range of organic compounds.
This work is part of a project to build an infrared database in order to link IR data of planetary materials (and therefore possible Mercury material) with remote sensing observations of Mercury, which will probably be obtained by the MERTIS instrument on the forthcoming BepiColombo mission. The unique achondrite Northwest Africa (NWA) 7325, which has previously been suggested to represent the first sample from Mercury, was investigated by optical and electron microscopy, and infrared and Raman spectroscopy. In addition, the oxygen, strontium, xenon, and argon isotopes were measured and the abundance of selected trace elements determined. The meteorite is a cumulate rock with subchondritic abundances of HFSE and REE and elevated Sr contents, which underwent a second heating and partial remelting process. Oxygen isotope measurements show that NWA 7325 plots in the ureilite field, close to the ALM‐A trachyandesitic fragment found in the unique Almahata Sitta meteorite breccia. On the other hand, mineralogical investigations of the pyroxenes in NWA 7325 provide evidence for similarities to the lodranites and acapulcoites. Furthermore, the rock is weakly shocked and argon isotope data record ancient (~4.5 Ga) plateau ages that have not been reset. The sample records a cosmogenic exposure age of ~19 Ma. Systematics of Rb‐Sr indicate an extreme early volatile depletion of the precursor material, similar to many other achondrite groups. However, despite its compositional similarities to other meteorite groups, our results suggest that this meteorite is unique and unrelated to any other known achondrite group. An origin for NWA 7325 as a sample from the planet Mercury is not supported by the results of our investigation. In particular, the evidence from infrared spectroscopy indicates that a direct relationship between NWA 7325 and the planet Mercury can be ruled out: no acceptable spectral match between laboratory analyses and remote sensing observations from Mercury has been obtained. However, we demonstrate that infrared spectroscopy is a rapid and nondestructive method to characterize mineral phases and thus an excellent tool for planetary surface characterization in space missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.