ABSTRACT:Unmanned Aerial Vehicles (UAVs) have gained popularity in acquiring geotagged, low cost and high resolution images. However, the images acquired by UAV-borne cameras often have poor georeferencing information, because of the low quality on-board Global Navigation Satellite System (GNSS) receiver. In addition, lightweight UAVs have a limited payload capacity to host a high quality on-board Inertial Measurement Unit (IMU). Thus, orientation parameters of images acquired by UAV-borne cameras may not be very accurate. Poorly georeferenced UAV images can be correctly oriented using accurately oriented airborne images capturing a similar scene by finding correspondences between the images. This is not a trivial task considering the image pairs have huge variations in scale, perspective and illumination conditions. This paper presents a procedure to successfully register UAV and aerial oblique imagery. The proposed procedure implements the use of the AKAZE interest operator for feature extraction in both images. Brute force is implemented to find putative correspondences and later on Lowe's ratio test (Lowe, 2004) is used to discard a significant number of wrong matches. In order to filter out the remaining mismatches, the putative correspondences are used in the computation of multiple homographies, which aid in the reduction of outliers significantly. In order to increase the number and improve the quality of correspondences, the impact of pre-processing the images using the Wallis filter (Wallis, 1974) is investigated. This paper presents the test results of different scenarios and the respective accuracies compared to a manual registration of the finally computed fundamental and essential matrices that encode the orientation parameters of the UAV images with respect to the aerial images.
ABSTRACT:For many applications within urban environments the combined use of images taken from the ground and from unmanned aerial platforms seems interesting: while from the airborne perspective the upper parts of objects including roofs can be observed, the ground images can complement the data from lateral views to retrieve a complete visualisation or 3D reconstruction of interesting areas. The automatic co-registration of air-and ground-based images is still a challenge and cannot be considered solved. The main obstacle is originating from the fact that objects are photographed from quite different angles, and hence state-of-the-art tie point measurement approaches cannot cope with the induced perspective transformation. One first important step towards a solution is to use airborne images taken under slant directions. Those oblique views not only help to connect vertical images and horizontal views but also provide image information from 3D-structures not visible from the other two directions. According to our experience, however, still a good planning and many images taken under different viewing angles are needed to support an automatic matching across all images and complete bundle block adjustment. Nevertheless, the entire process is still quite sensible -the removal of a single image might lead to a completely different or wrong solution, or separation of image blocks. In this paper we analyse the impact different parameters and strategies have on the solution. Those are a) the used tie point matcher, b) the used software for bundle adjustment. Using the data provided in the context of the ISPRS benchmark on multi-platform photogrammetry, we systematically address the mentioned influences. Concerning the tie-point matching we test the standard SIFT point extractor and descriptor, but also the SURF and ASIFT-approaches, the ORB technique, as well as (A)KAZE, which are based on a nonlinear scale space. In terms of pre-processing we analyse the Wallis-filter. Results show that in more challenging situations, in this case for data captured from different platforms at different days most approaches do not perform well. Wallis-filtering emerged to be most helpful especially for the SIFT approach. The commercial software pix4dmapper succeeds in overall bundle adjustment only for some configurations, and especially not for the entire image block provided.
ABSTRACT:Mobile Mapping (MM) is a technique to obtain geo-information using sensors mounted on a mobile platform or vehicle. The mobile platform's position is provided by the integration of Global Navigation Satellite Systems (GNSS) and Inertial Navigation Systems (INS). However, especially in urban areas, building structures can obstruct a direct line-of-sight between the GNSS receiver and navigation satellites resulting in an erroneous position estimation. Therefore, derived MM data products, such as laser point clouds or images, lack the expected positioning reliability and accuracy. This issue has been addressed by many researchers, whose aim to mitigate these effects mainly concentrates on utilising tertiary reference data. However, current approaches do not consider errors in height, cannot achieve sub-decimetre accuracy and are often not designed to work in a fully automatic fashion. We propose an automatic pipeline to rectify MM data products by employing high resolution aerial nadir and oblique imagery as horizontal and vertical reference, respectively. By exploiting the MM platform's defective, and therefore imprecise but approximate orientation parameters, accurate feature matching techniques can be realised as a pre-processing step to minimise the MM platform's threedimensional positioning error. Subsequently, identified correspondences serve as constraints for an orientation update, which is conducted by an estimation or adjustment technique. Since not all MM systems employ laser scanners and imaging sensors simultaneously, and each system and data demands different approaches, two independent workflows are developed in parallel. Still under development, both workflows will be presented and preliminary results will be shown. The workflows comprise of three steps; feature extraction, feature matching and the orientation update. In this paper, initial results of low-level image and point cloud feature extraction methods will be discussed as well as an outline of the project and its framework will be given.
ABSTRACT:Mobile Mapping (MM) has gained significant importance in the realm of high-resolution data acquisition techniques. MM is able to record georeferenced street-level data in a continuous (laser scanners) and/or discrete (cameras) fashion. MM's georeferencing relies on a conjunction of Global Navigation Satellite Systems (GNSS), Inertial Measurement Units (IMU) and optionally on odometry sensors. While this technique does not pose a problem for absolute positioning in open areas, its reliability and accuracy may be diminished in urban areas where high-rise buildings and other tall objects can obstruct the direct line-of-sight between the satellite and the receiver unit. Consequently, multipath measurements or complete signal outages impede the MM platform's localisation and may affect the accurate georeferencing of collected data. This paper presents a technique to recover correct orientation parameters for MM imaging platforms by utilising aerial images as an external georeferencing source. This is achieved by a fully automatic registration strategy which takes into account the overall differences between aerial and MM data, such as scale, illumination, perspective and content. Based on these correspondences, MM data can be verified and/or corrected by using an adjustment solution. The registration strategy is discussed and results in a success rate of about 95%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.