We present a systematic study of mode characteristics of multilayer metal-dielectric (M-D) nanofilm structures. This structure can be described as a coupled-plasmon-resonantwaveguide (CPRW), a special case of coupled-resonator optical waveguide (CROW). Similar to a photonic crystal, the M-D is periodic, but there is a major difference in that the fields are evanescent everywhere in the M-D structure as in a nanoplasmonic structure. The transmission coefficient exhibits periodic oscillation with increasing number of periods. As a result of surface-plasmon-enhanced resonant tunneling, a 100% transmission occurs periodically at certain thicknesses of the M-D structure, depending on the wavelength, lattice constants, and excitation conditions. This structure indicates that a transparent material can be composed from non-transparent materials by alternatively stacking different materials of thin layers. The general properties of the CPRW and resonant tunneling phenomena are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.