Two experiments were conducted to determine the effects of different dietary lysine levels on the apparent nutrient digestibility, the serum amino acid (AA) concentration, and the biochemical parameters of the precaval and portal vein blood in growing pigs. In Experiment 1, 15 noncannulated pigs received diets with different lysine densities (0.65%, 0.95%, and 1.25% lysine) for 13 d. A total collection digestion test was performed, and blood samples were collected from the precaval vein at the end of the experiment. In Experiment 2, four cannulated pigs were fed the same diets of Experiment 1. The experiment used a self-control experimental design and was divided into three periods. On d 5 of each period, at 0.5 h before feeding and hourly up to 8 h after feeding, single blood samples were collected from catheters placed in the portal vein. In Experiment 1, some serum AAs (including lysine), serum urinary nitrogen (SUN), and total protein (TP) concentrations were significantly affected by the dietary lysine levels (p<0.05). Moreover, the 0.65% lysine treatment showed a significant lower apparent digestibility of gross energy, dry matter, crude protein, and phosphorus than the other treatments (p<0.05). In Experiment 2, serum lysine, histidine, phenylalanine, threonine, valine, isoleucine (p = 0.0588), triglyceride, and SUN (p = 0.0572) concentrations were significantly affected by the dietary lysine levels (p<0.05). Additionally, almost all of the determined serum AA and total AA concentrations reached their lowest values at 0.5 h before feeding and their highest values at 2 h after feeding (p<0.05). These findings indicate that the greatest absorption of AA occurred at 2 h after feeding and that the dynamic profile of serum AA is affected by the dietary lysine levels. Moreover, when the dietary lysine content was 0.95%, the growing pigs achieved a better nutrient digestibility and serum metabolites levels.
One hundred and twenty pigs were used to evaluate the effects of different dietary lysine levels on the growth performance, apparent nutrient digestibility, and abundance of cationic amino acid transporter messenger RNA (mRNA) in the small intestine of finishing pigs. Pigs received a low lysine diet (LL, 0.60% lysine), moderate lysine diet (ML, 0.80% lysine) or a high lysine diet (HL, 1.00% lysine) for 28 days. A digestion test was carried out during the third week. Although the apparent nutrient digestibility in pigs fed experimental diets were different (P < 0.05) and the highest when pigs were fed ML diet, diets did not change the growth performance. In the duodenum, mRNA abundance of PepT-1, as detected by real-time RT-PCR, was reduced in the LL diet (P < 0.05). A greater abundance of b(0,+) AT and PepT-1 mRNA was associated with the ML diet (P < 0.05) in the jejunum and ileum, respectively. In the ileum, the HL diet had a lower abundance of CAT-1 mRNA compared with other diets. These results showed that the finishing pigs would gain better nutrient digestibility when the dietary lysine content was 0.80%, and dietary lysine levels influenced the expression of cationic amino acid transporter mRNA in the small intestine of finishing pigs.
This study was conducted to investigate the gene expression of cationic and neutral amino acid (AA) transporters in the small intestine of chick embryos with different genetic backgrounds [Wenshi Yellow-Feathered chick (WYFC) and White Recessive Rock chick (WRRC)]. The study also investigated the correlation between the abundance of AA transporter mRNA and the AA content of fertilized eggs. Intestinal samples were collected on embryonic d 9, 12, 14, 17, and 19 and the day of hatch. The results showed that, before incubation, the AA content of WRRC eggs was lower (P < 0.05) than the AA content of WYFC eggs. In WYFC, the mRNA abundance of CAT-1 [solute carrier (SLC) family 7 member 1], CAT-4 (SLC family 7 member 4), rBAT (SLC family 3 member 1), y(+)LAT-1 (SLC family 7 member 7), y(+)LAT-2 (SLC family 7 member 6), LAT-4 (SLC family 43 member 2), and SNAT-2 (SLC family 38 member 2), as detected by real-time reverse transcriptase PCR, was greater (P < 0.05) than the mRNA abundance detected in the WRRC samples. The mRNA abundance of all measured AA transporters was affected (P < 0.05) by embryonic age. Sex had the largest effect (P < 0.05) on the mRNA expression of CAT-1, CAT-4, y(+)LAT-2, and LAT-4 in WYFC and on CAT-4 and B(0)AT-1 (SLC family 6 member 19) mRNA expression in WRRC. In WYFC, only CAT-1 mRNA expression was negatively correlated (r = -0.68 to -0.84, P < 0.05) with all AA content. However, few correlations were detected between AA content and the mRNA expression of multiple transporters in WRRC. These findings provide a comprehensive profile of the temporal and spatial mRNA expression of AA transporters in the small intestine of chick embryos. Few correlations were detected between the AA content of the eggs and mRNA expression of specific AA transporters in the small intestine.
Background The process of multiple myeloma (MM) is the result of the combined action of multiple genes. This study aims to explore the role and mechanism of cytoplasmic polyadenylation element binding protein2 (CPEB2) in MM progression. Methods The mRNA and protein expression levels of CPEB2 and actin-related protein 2/3 complex subunit 5 (ARPC5) were assessed by quantitative real-time PCR and western blot analysis. Cell function was determined by cell counting kit 8 assay, soft-agar colony formation assay, flow cytometry and tube formation assay. Fluorescent in situ hybridization assay was used to analyze the co-localization of CPEB2 and ARPC5 in MM cells. Actinomycin D treatment and cycloheximide chase assay were performed to assess the stability of ARPC5. The interaction between CPEB2 and ARPC5 was confirmed by RNA immunoprecipitation assay. Results CPEB2 and ARPC5 mRNA and protein expression levels were upregulated in CD138+ plasma cells from MM patients and cells. CPEB2 downregulation reduced MM cell proliferation, angiogenesis, and increased apoptosis, while its overexpression had an opposite effect. CPEB2 and ARPC5 were co-localized at cell cytoplasm and could positively regulate ARPC5 expression by mediating its mRNA stability. ARPC5 overexpression reversed the suppressive effect of CPEB2 knockdown on MM progression, and it knockdown also abolished CPEB2-promoted MM progression. Besides, CPEB2 silencing also reduced MM tumor growth by decreasing ARPC5 expression. Conclusion Our results indicated that CPEB2 increased ARPC5 expression through promoting its mRNA stability, thereby accelerating MM malignant process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.