Extracellular recordings of 209 neurons were obtained with carbon fiber-containing multibarrel micropipettes. The cells were isolated in the primary somatosensory cortex of cats anesthetized with barbiturate and classified according to the nature of their response to natural stimuli, the nature of the surrounding multiunit responses to the same stimuli, the response to thalamic stimulation, and their depth in the cortex. To study factors controlling the excitability of somatosensory neurons, their receptive fields were examined in the presence of iontophoretically administered gamma-aminobutyric acid (GABA), glutamate, and bicuculline methiodide (BMI). Even when the neurons were depolarized to perithreshold levels with glutamate, or when local inhibitory influences mediated by GABA were antagonized by BMI, the apparent specificity for one class of afferent input was maintained. Neurons responding to stimulation of either cutaneous or deep receptors maintained their modality specificity, and neurons in cutaneous rapidly adapting regions never took on slowly adapting properties. When ejected at currents that did not elicit action potentials, glutamate lowered the threshold for activation by cutaneous stimuli but did not enlarge the receptive field. With larger ejecting currents, the neurons developed an on-going discharge, but even at these higher doses, glutamate did not produce an increase in the receptive-field size. Some neurons in regions of cortex exhibiting slowly adapting multiunit responses were relatively insensitive to glutamate. These cells required four to five times more glutamate to evoke discharges than did most neurons. Other cells, previously unresponsive to somatic stimuli, could be shown to possess distinct cutaneous receptive fields when either glutamate or BMI was ejected in their vicinity. Iontophoretically administered BMI altered the firing pattern of somatosensory neurons, causing them to discharge in bursts of 3-15 impulses. BMI enlarged the receptive-field size of neurons in regions displaying rapidly adapting multiunit background discharges but not in those regions with slowly adapting multiunit discharges. This differential effect of BMI, suggesting that GABA controls receptive-field size in rapidly adapting regions, also indicates that neurons in rapidly adapting regions differ pharmacologically from those in other submodality regions. In all cortical regions, BMI blocked the poststimulus inhibitory period that normally followed thalamic stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
Responses evoked in neurons of rat sensorimotor cortex upon stimulation of the pyramidal tract and ipsilateral cerebral peduncle were analysed using intracellular recording. Neurons responding antidromically to pyramidal tract stimulation (PT cells) and neurons failing to respond antidromically but exhibiting orthodromic responses were both stained by intracellular injection of horseradish peroxidase (HRP). Layer V pyramidal neurons, including those responding antidromically, exhibited prominent long lasting membrane hyperpolarizations and inhibitions of action potentials following pyramidal tract or cerebral peduncle stimulation. Upon passage of polarizing intracellular current two components were identified within the hyperpolarizing potential. A short duration initial component readily reversed with hyperpolarizing current. Frequently this earlier component overlapped a period of early excitation consisting of action potentials arising from recurrent EPSPs or large slow depolarizing potentials (SDPs). The second, much longer duration hyperpolarizing component did not reverse with passage of hyperpolarizing current and was often followed by a rebound period of depolarization and action potential generation. Both the excitatory and the inhibitory portions of these responses could be demonstrated in animals with acute thalamic transections severing the ascending lemniscal pathway to cortex. Following intracellular staining with HRP, two types of PT cells were identified by their different intracortical axonal arborizations. Most of the injected neurons had local axonal fields extending widely in layers V and VI, but with few or no collaterals extending radially toward the more superficial layers. A second type of PT cell had axon collaterals limited to a narrow zone around the dendritic field but extending radially as far as layer I. Cells of both types were observed to send axon collaterals into neostriatum. Both types of neurons exhibited morphological and physiological characteristics of slow PT cells, and we could find no cells comparable to the fast conducting PT cells observed in other species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.