The gastrointestinal hormone, glucagon-like peptide-1(7-36)amide (GLP-1) is released after a meal. The potency of synthetic GLP-1 in stimulating insulin secretion and in inhibiting glucagon secretion indicates the putative physiological function of GLP-1. In vitro, the nonmammalian peptide, exendin(9-39)amide [ex(9-39)NH2], is a specific and competitive antagonist of GLP-1. This in vivo study examined the efficacy of ex(9-39)NH2 as an antagonist of exogenous GLP-1 and the physiological role of endogenous GLP-1. Six healthy volunteers underwent 10 experiments in random order. In each experiment, a 30-min period of euglycemia was followed by an intravenous infusion of glucose for 150 min that established a stable hyperglycemia of 8 mmol/liter. There was a concomitant intravenous infusion of one of the following: (1) saline, (2) GLP-1 (for 60 min at 0.3 pmol . kg-1 . min-1 that established physiological postprandial plasma levels, and for another 60 min at 0.9 pmol . kg-1 . min-1 to induce supraphysiological plasma levels), (3-5) ex(9-39)NH2 at 30, 60, or 300 pmol . kg-1 . min-1 + GLP-1, (6-8) ex(9-39)NH2 at 30, 60, or 300 pmol . kg-1 . min-1 + saline, (9 and 10) GIP (glucose-dependent insulinotropic peptide; for 60 min at 0.8 pmol . kg-1 . min-1, with saline or ex(9-39)NH2 at 300 pmol . kg-1 . min-1). Each volunteer received each of these concomitant infusions on separate days. ex(9-39)NH2 dose-dependently reduced the insulinotropic action of GLP-1 with the inhibitory effect declining with increasing doses of GLP-1. ex(9-39)NH2 at 300 pmol . kg-1 . min-1 blocked the insulinotropic effect of physiological doses of GLP-1 and completely antagonized the glucagonostatic effect at both doses of GLP-1. Given alone, this load of ex(9-39)NH2 increased plasma glucagon levels during euglycemia and hyperglycemia. It had no effect on plasma levels of insulin during euglycemia but decreased plasma insulin during hyperglycemia. ex(9-39)NH2 did not alter GIP-stimulated insulin secretion. These data indicate that in humans, ex(9-39)NH2 is a potent GLP-1 antagonist without any agonistic properties. The pancreatic A cell is under a tonic inhibitory control of GLP-1. At hyperglycemia, the B cell is under a tonic stimulatory control of GLP-1.
Twelve patients with non-insulin dependent diabetes mellitus (NIDDM) under secondary failure to sulfonylureas were studied to evaluate the effects of subcutaneous glucagon-like peptide-1(7-36)amide (GLP-1) on (a) the gastric emptying pattern of a solid meal (250 kcal) and (b) the glycemic and endocrine responses to this solid meal and an oral glucose tolerance test (OGTT, 300 kcal). 0·5 nmol/kg of GLP-1 or placebo were subcutaneously injected 20 min after meal ingestion. GLP-1 modified the pattern of gastric emptying by prolonging the time to reach maximal emptying velocity (lag period) which was followed by an acceleration in the post-lag period. The maximal emptying velocity and the emptying half-time remained unaltered. With both meals, GLP-1 diminished the postprandial glucose peak, and reduced the glycemic response during the first two postprandial hours by 54·5% (solid meal) and 32·7% (OGTT) (P<0·05). GLP-1 markedly stimulated insulin secretion with an effect lasting for 105 min (solid meal) or 150 min (OGTT). The postprandial increase of plasma glucagon was abolished by GLP-1. GLP-1 diminished the postprandial release of pancreatic polypeptide. The initial and transient delay of gastric emptying, the enhancement of postprandial insulin release, and the inhibition of postprandial glucagon release were independent determinants (P<0·002) of the postprandial glucose response after subcutaneous GLP-1. An inhibition of efferent vagal activity may contribute to the inhibitory effect of GLP-1 on gastric emptying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.