In this paper, laser-induced breakdown spectroscopy (LIBS) under magnetic field condition has been studied in laboratory and EAST tokamak. The experimental results reveal that in helium ambient gas, the magnetic field significantly enhances the LIBS signal intensity (~ 3 times). The effect of time delay and laser fluence on the intensity of LIBS has been investigated for optimizing the signal to background ratio (S/B). The developed LIBS approach has been applied to monitor the cleaning performance of the first wall in the fusion device of EAST using the ion cyclotron range of frequency (ICRF). The experimental results demonstrate that the cleaning performance for Li/D co-deposition layer is effective under helium ambient gas. The removing rate of Li on the surface of W tile is faster than that on Mo tile in He-ICRF cleaning and the D/(D+H) ratio on Mo tile is higher by ~ 1.2 times than that on W tile. This work would indicate the feasibility of using LIBS to monitor the wall cleaning processes in EAST tokamak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.