We present new images of lithospheric structure obtained from P‐to‐S conversions defined by receiver functions at the 85 broadband seismic stations of the EarthScope IDaho‐ORegon experiment. We resolve the crustal thickness beneath the Blue Mountains province and the former western margin of cratonic North America, the geometry of the western Idaho shear zone (WISZ), and the boundary between the Grouse Creek and Farmington provinces. We calculated P‐to‐S receiver functions using the iterative time domain deconvolution method, and we used the H‐k grid search method and common conversion point stacking to image the lithospheric structure. Moho depths beneath the Blue Mountains terranes range from 24 to 34 km, whereas the crust is 32–40 km thick beneath the Idaho batholith and the regions of extended crust of east‐central Idaho. The Blue Mountains group Olds Ferry terrane is characterized by the thinnest crust in the study area, ~24 km thick. There is a clear break in the continuity of the Moho across the WISZ, with depths increasing from 28 km west of the shear zone to 36 km just east of its surface expression. The presence of a strong midcrustal converting interface at ~18 km depth beneath the Idaho batholith extending ~20 km east of the WISZ indicates tectonic wedging in this region. A north striking ~7 km offset in Moho depth, thinning to the east, is present beneath the Lost River Range and Pahsimeroi Valley; we identify this sharp offset as the boundary that juxtaposes the Archean Grouse Creek block with the Paleoproterozoic Farmington zone.
We developed 3‐D isotropic crustal seismic velocity models of central Idaho and eastern Oregon from the IDOR (western IDaho and eastern ORegon) Passive seismic data. Ambient noise tomography yielded crustal velocity structure from vertical component Rayleigh wave group and phase velocity measurements. Results include a strong shear wave velocity contrast—faster in accreted Blue Mountains terranes west of the western Idaho shear zone (WISZ), slower in the Idaho batholith, emplaced within the Archean Grouse Creek block east of the WISZ—restricted to the upper‐to‐middle crust. In deeper crust not affected by mafic underplating during Columbia River Flood Basalt magmatism, the shear wave velocity of the Mesozoic Olds Ferry continental arc terrane is indistinguishable from that of the Archean Grouse Creek block basement. Crustal columns of the Olds Ferry terrane and the Permian‐Jurassic Wallowa intraoceanic arc terrane are characterized by low seismic velocities, consistent with felsic lithologies down to ∼20 km. West of the WISZ, the Bourne and Greenhorn subterranes of the Baker terrane, an accretionary complex between the arc terranes, have distinct shallow crustal seismic velocities. The Greenhorn subterrane to midcrustal depths is in an overthrust geometry relative to the Bourne subterrane. Lack of mafic lower crust in our results of the Wallowa or Olds Ferry arcs may be due to imbrication of upper crustal felsic plutonic complexes of these arcs. Shortening and thickening of the Blue Mountains arc terranes crust to >30 km, and subduction or delamination of their mafic lower crustal sections is a viable mechanism for growth of a felsic continental crust.
The Lunar Geophysical Network (LGN) mission is proposed to land on the Moon in 2030 and deploy packages at four locations to enable geophysical measurements for 6–10 yr. Returning to the lunar surface with a long-lived geophysical network is a key next step to advance lunar and planetary science. LGN will greatly expand our primarily Apollo-based knowledge of the deep lunar interior by identifying and characterizing mantle melt layers, as well as core size and state. To meet the mission objectives, the instrument suite provides complementary seismic, geodetic, heat flow, and electromagnetic observations. We discuss the network landing site requirements and provide example sites that meet these requirements. Landing site selection will continue to be optimized throughout the formulation of this mission. Possible sites include the P-5 region within the Procellarum KREEP Terrane (PKT; (lat: 15°; long: −35°), Schickard Basin (lat: −44.°3; long: −55.°1), Crisium Basin (lat: 18.°5; long: 61.°8), and the farside Korolev Basin (lat: −2.°4; long: −159.°3). Network optimization considers the best locations to observe seismic core phases, e.g., ScS and PKP. Ray path density and proximity to young fault scarps are also analyzed to provide increased opportunities for seismic observations. Geodetic constraints require the network to have at least three nearside stations at maximum limb distances. Heat flow and electromagnetic measurements should be obtained away from terrane boundaries and from magnetic anomalies at locations representative of global trends. An in-depth case study is provided for Crisium. In addition, we discuss the consequences for scientific return of less than optimal locations or number of stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.