Tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death in the world. One third of the world's population is infected with Mycobacterium tuberculosis (Mtb), the etiologic agent of TB. The bacterial enzyme MurA catalyzes the transfer of enolpyruvate from phosphoenolpyruvate (PEP) to uridine diphospho-N-acetylglucosamine (UNAG), which is the first committed step of bacterial cell wall biosynthesis. In this work, 3D structure model of Mtb-MurA enzyme has been developed for the first time by homology modeling and molecular dynamics simulation techniques. Multiple sequence alignment and 3D structure model provided the putative substrate binding pocket of Mtb-MurA with respect to E. coli MurA. This analysis was helpful in identifying the binding sites and molecular function of the MurA homologue. Molecular docking study was performed on this 3D structure model, using different classes of inhibitors like fosfomycin, cyclic disulfide analog RWJ-3981, pyrazolopyrimidine analog RWJ-110192, purine analog RWJ-140998, 5-sulfonoxy-anthranilic acid derivatives T6361, T6362 and the results showed that the 5-sulfonoxyanthranilic acid derivatives showed the best interaction compared to other inhibitors. We also designed new efficient analogs of T6361 and T6362 which showed even better interaction with Mtb-MurA than the parental 5-sulfonoxy-anthranilic acid derivatives. Further the comparative molecular electrostatic potential and cavity depth analysis of Mtb-MurA suggested several important differences in its substrate and inhibitor binding pocket. Such differences could be exploited in the future for designing a more specific inhibitor for Mtb-MurA enzyme.
Syringic acid, a known plant phenolic compound and its analogues are known to possess high proteasome inhibitory activity. In the current work, we describe synthesis, characterization, DFT, docking of syringic acid (SA) and analogues (SAA1 and SAA2) and biological effects were studied. Syringic acid and its analogues were docked for the first time with the crystal structures of β5 proteasome of diverse eukaryotic organisms. Among all proteasomes, the humanoid proteasome showed the highest degree of docking conformation and low inhibition constant (Ki). SAA2 specifically displayed binding to the N-terminal Thr1 residue in the S1 pocket of Mus musculus β5 proteasome along with threonine, lysine and arginine; conventionally involved major amino acid residues in ligand binding. The geometrical properties (B3LYP/6- 31g (d, p)) and electrostatic potentials of molecules were computed using DFT calculations. A detailed molecular picture of the compounds and its interactions was obtained from NBO analysis. SA-analogues elucidated potent antioxidant activities and good antibacterial activity. In-vitro DNA binding studies revealed that all molecules had strong binding at the major groove of dsDNA. In the view of medical applicability, proteasome inhibition is an important therapeutic strategy for various types of cancers. Therefore, current discoveries may encourage the rational design and development of new chemical entities of syringic acid based chemotherapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.