is a notorious opportunistic pathogen that is prevalent mainly in hospital settings. The ability of to adapt and to survive in a range of environments has been a key factor for its persistence and success as an opportunistic pathogen. In this study, we investigated the effect of temperature on the clinically relevant phenotypes displayed by at 37°C and 28°C. Surface-associated motility was significantly reduced at 28°C, while biofilm formation on plastic surfaces was increased at 28°C. Decreased susceptibility to aztreonam and increased susceptibility to trimethoprim-sulfamethoxazole were observed at 28°C. No differences in virulence, as assayed in a model, were observed. Proteomic analysis showed differential expression of 629 proteins, of which 366 were upregulated and 263 were downregulated at 28°C. Upregulation of the Csu and iron uptake proteins at 28°C was a key finding for understanding some of the phenotypes displayed by at 28°C.
Acinetobacter baumannii is an important nosocomial bacterial pathogen. Multidrug-resistant isolates of A. baumannii are reported worldwide. Some A. baumannii isolates display resistance to nearly all antibiotics, making treatment of infections very challenging. As the need for new and effective antibiotics against A. baumannii becomes increasingly urgent, there is a need to understand the mechanisms of antibiotic resistance and virulence in this organism. In this work, comparative genomics was used to understand the mechanisms of antibiotic resistance and virulence in AB030, an extremely drug-resistant and hypervirulent strain of A. baumannii that is a representative of a recently emerged lineage of A. baumannii International Clone V. In order to characterize AB030, we carried out a genomic and phenotypic comparison with LAC-4, a previously described hyper-resistant and hypervirulent isolate. AB030 contains a number of antibiotic resistance- and virulence-associated genes that are not present in LAC-4. A number of these genes are present on mobile elements. This work shows the importance of characterizing the members of new lineages of A. baumannii in order to determine the development of antibiotic resistance and virulence in this organism.
Resistance to antibiotics has become a serious problem for society, and there are increasing efforts to understand the reasons for and sources of resistance. Bacterial-encoded enzymes and transport systems, both innate and acquired, are the most frequent culprits for the development of resistance, although in Mycobacterium tuberculosis, the catalase-peroxidase, KatG, has been linked to the activation of the antitubercular drug isoniazid. While investigating a possible link between aminoglycoside antibiotics and the induction of oxidative bursts, we observed that KatG reduces susceptibility to aminoglycosides. Investigation revealed that kanamycin served as an electron donor for the peroxidase reaction, reducing the oxidized ferryl intermediates of KatG to the resting state. Loss of electrons from kanamycin was accompanied by the addition of a single oxygen atom to the aminoglycoside. The oxidized form of kanamycin proved to be less effective as an antibiotic. Kanamycin inhibited the crystallization of KatG, but the smaller, structurally related glycoside maltose did cocrystallize with KatG, providing a suggestion as to the possible binding site of kanamycin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.