Time-zero current-voltage characteristics and time-dependent current behavior of metal-ferroelectric-metal (Pt-PZT-Pt) capacitor structures have been studied. Under constant-voltage stressing, the current density through the 1500-Å-thick lead-zirconate-titanate (PZT) film exhibits a power-law dependence on time, with the exponent (∼0.33) independent of temperature and voltage. Electrode material dependence of current density indicates that the conventional model of trap-limited single-carrier injection over nonblocking contacts is inadequate to explain the time-zero current. A change in top electrode material from Pt to In leads to the observation of work-function-driven Schottky contacts between the metal and ferroelectric. The current-voltage characteristics fit a two-carrier injection metal-semiconductor-metal model incorporating blocking contacts, with distinct low- and high-current regimes (PZT is assumed to be p-type and trap-free in this model). Temperature-dependent I-V measurements indicate a Pt-PZT barrier height of 0.6 eV and an acceptor doping level of ∼1018 cm−3 in PZT. The implications of this model on the optimization of ferroelectric capacitors for dynamic random access memory applications are discussed.
Hetero-epitaxy of single-crystal perovskite SrTiO3 on GaAs(001) was achieved using molecular beam epitaxy. The growth was accomplished by deposition of a submonolayer of titanium on GaAs(001), followed by the co-deposition of strontium and titanium initiated at a low-temperature, low-oxygen-pressure condition. X-ray photoelectron spectroscopy showed that the Ti prelayer reacted with As and formed TiAs-like species on the As terminated GaAs(001) surface. Reflection-high-energy-electron diffraction showed that SrTiO3 grew coherently on the GaAs(001) at early stage of growth. This coherent behavior began to degrade when SrTiO3 thickness exceeded 20Å. Cross-sectional transmission electron microscopy revealed an abrupt interface between SrTiO3 and GaAs and good crystallinity of the SrTiO3 film. An epitaxial relationship between SrTiO3 and GaAs was further confirmed by x-ray diffraction. The success of growth of SrTiO3 on GaAs paves the way for integration of various functional perovskite oxides with GaAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.