The strong requirement for high-performing quantum computing led to intensive research on novel quantum platforms in the last decades. The circuital nature of Josephson-based quantum superconducting systems powerfully supports massive circuital freedom, which allowed for the implementation of a wide range of qubit designs, and an easy interface with the quantum processing unit. However, this unavoidably introduces a coupling with the environment, and thus to extra decoherence sources. Moreover, at the time of writing, control and readout protocols mainly use analogue microwave electronics, which limit the otherwise reasonable scalability in superconducting quantum circuits. Within the future perspective to improve scalability by integrating novel control energy-efficient superconducting electronics at the quantum stage in a multi-chip module, we report on an all-microwave characterization of a planar two-transmon qubits device, which involves state-of-the-art control pulses optimization. We demonstrate that the single-qubit average gate fidelity is mainly limited by the gate pulse duration and the quality of the optimization, and thus does not preclude the integration in novel hybrid quantum-classical superconducting devices.
We discuss the capabilities of ferromagnetic (F) Josephson junctions (JJs) in a variety of layouts and configurations. The main goal is to demonstrate the potential of these hybrid JJs to disclose new physics and the possibility to integrate them in superconducting classical and quantum electronics for various applications. The feasible path towards the use of ferromagnetic Josephson junctions in quantum circuits starts from experiments demonstrating macroscopic quantum tunneling in NbN/GdN/NbN junctions with ferro-insulator barriers and with triplet components of the supercurrent, supported by a self-consistent electrodynamic characterization as a function of the barrier thickness. This has inspired further studies on tunnel ferromagnetic junctions with a different layout and promoted the first generation of ferromagnetic Al-based JJs, specifically Al/AlOx/Al/Py/Al. This layout takes advantage of the capability to integrate the ferromagnetic layer in the junction without affecting the quality of the superconducting electrodes and of the tunnel barrier. The high quality of the devices paves the way for the possible implementation of Al tunnel-ferromagnetic JJs in superconducting quantum circuits. These achievements have promoted the notion of a novel type of qubit incorporating ferromagnetic JJs. This qubit is based on a transmon design featuring a tunnel JJ in parallel with a ferromagnetic JJ inside a SQUID loop capacitively coupled to a superconducting readout resonator. The effect of an external RF field on the magnetic switching processes of ferromagnetic JJs has been also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.