-Using a sample of high-redshift lensed quasars from the CASTLES project with observed-frame ultraviolet or optical and near-infrared spectra, we have searched for possible biases between supermassive black hole (BH) mass estimates based on the C iv, Hα and Hβ broad emission lines. Our sample is based upon that of Greene, Peng & Ludwig, expanded with new near-IR spectroscopic observations, consistently analyzed high S/N optical spectra, and consistent continuum luminosity estimates at 5100Å. We find that BH mass estimates based on the FWHM of C iv show a systematic offset with respect to those obtained from the line dispersion, σ l , of the same emission line, but not with those obtained from the FWHM of Hα and Hβ. The magnitude of the offset depends on the treatment of the He ii and Fe ii emission blended with C iv, but there is little scatter for any fixed measurement prescription. While we otherwise find no systematic offsets between C iv and Balmer line mass estimates, we do find that the residuals between them are strongly correlated with the ratio of the UV and optical continuum luminosities. This means that much of the dispersion in previous comparisons of C iv and Hβ BH mass estimates are due to the continuum luminosities rather than any properties of the lines. Removing this dependency reduces the scatter between the UV-and optical-based BH mass estimates by a factor of approximately 2, from roughly 0.35 to 0.18 dex. The dispersion is smallest when comparing the C iv σ l mass estimate, after removing the offset from the FWHM estimates, and either Balmer line mass estimate. The correlation with the continuum slope is likely due to a combination of reddening, host contamination and object-dependent SED shapes. When we add additional heterogeneous measurements from the literature, the results are unchanged. Moreover, in a trial observation of a remaining outlier, the origin of the deviation is clearly due to unrecognized absorption in a low S/N spectrum. This not only highlights the importance of the quality of the observations, but also raises the question if whether cases like this one are common in the literature, further biasing comparisons between C iv and other broad emission lines.
We combine the observations of rotation measures of extragalactic radio sources from the Canadian Galactic Plane Survey and pulsars to investigate the question of magnetic field reversals in the outer Galaxy. Our results are consistent with there being no reversal in the Galactic magnetic field beyond the solar radius. We reconcile our conclusions with the results of previous studies that have been used to argue the presence of such reversals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.