A combined approach for the simulation of reactive, neutral, partially or fully ionized plasma flows is presented. This is realized in a code framework named “PICLas” for the approximate solution of the Boltzmann equation by particle based methods. PICLas combines the particle-in-cell method for the collisionless Vlasov–Maxwell system and the direct simulation Monte Carlo method for neutral reactive flows. Basic physical and mathematical modeling of both methods is addressed, and some application examples are presented in order to demonstrate the capabilities and the broad applicability of the solution strategy.
This paper investigates three different particle-based continuum methods, the ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) and Fokker-Planck (ESFP) methods and the Low Diffusion (LD) method, for a coupling with the direct simulation Monte Carlo (DSMC) method. After a short description of the methods and their implementation, including the coupling concept for the LD-DSMC, simulation results of a nozzle expansion are compared with available experimental measurements and a DSMC simulation. Excellent agreement between ESBGK, ESFP, and DSMC can be observed in the throat of the nozzle, while the LD method fails to predict the correct velocity, temperature, and density profile. Further downstream, only the DSMC and the coupled ESBGK/ESFP-DSMC simulations are able to reproduce the measured rotational temperature profiles. A performance comparison shows the possible computational savings of a coupled ESBGK/ESFP-DSMC simulation, where a speedup of four orders of magnitude can be observed compared to a regular DSMC simulation.
Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.