Currently, the majority of the agricultural sector in Indonesia is carried out by small communities. Half of the Indonesian people (approximately 10 million people) work in the agricultural sector and utilize agricultural land. Some of the tools used by farmers are still using traditional tools, but some are already using modern farming tools. In general, agricultural tools are divided into 3 categories, namely agricultural tools used before the seeds are planted, agricultural tools used when caring for seedlings that are growing and developing, and agricultural tools used when harvesting. One of the technologies used in agriculture is the use of drones or Unmanned Aerial Vehicles (UAV) in the process of sowing fertilizers and seeds and spraying pesticides. The current use of UAVs supports agriculture with manual operation and based on GPS waypoint positioning. In the process, the visual aspects that can be obtained from the UAV have not been considered, so the treatment carried out on agricultural land is the same. The problem of similarity in treatment can lead to similar treatment on heterogeneous agricultural land. Agricultural land should be treated according to the conditions of the land. Because the condition of the land will affect the growth of the planted vegetation. Another problem found in agricultural land is the different rice growth in each paddy field. Rice growth can be seen by farmers through visual aspects but farmers cannot directly see the visual condition of rice growth as a whole because of the large area of land. Utilization of UAV by taking high-resolution aerial imagery can provide visuals of the overall condition of rice from various angles of image capture. The general objective of this research is to classify rice growth on high resolution UAV images based on the Convolutional Neural Network (CNN). The data used in this study were acquired using a multirotor UAV in the same rice field area. The data consists of 500 images consisting of 5 groups. Group 1-2 is the vegetative phase, group 3 is the generative phase and group 4-5 is the ripening phase. CNN is used to conduct training with variations of epochs are 100, 250 and 500. The best accuracy results are obtained in the training epoch 500 with 96% of Accuration
This study aims to determine the role of the information system in the sale and purchase of oil palm and rubber plantations. This research used a descriptive method to explain the problems faced by the community in applying application technology to improve sales quality. The results of this study showed that the P&R Plantation application can be a medium to improve the quality of sales and purchases in the field of oil palm and rubber plantations. This application also can help community empowerment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.