[1] We present a newly developed empirical model of the plasma density in the plasmasphere. It is based on more than 700 density profiles along field lines derived from active sounding measurements made by the radio plasma imager on IMAGE between June 2000 and July 2005. The measurements cover all magnetic local times and vary from L = 1.6 to L = 4 spatially, with every case manually confirmed to be within the plasmasphere by studying the corresponding dynamic spectrogram. The resulting model depends not only on L-shell but also on magnetic latitude and can be applied to specify the electron densities in the plasmasphere between 2000 km altitude and the plasmapause (the plasmapause location itself is not included in this model). It consists of two parts: the equatorial density, which falls off exponentially as a function of L-shell; and the field-aligned dependence on magnetic latitude and L-shell (in the form of invariant magnetic latitude). The fluctuations of density appear to be greater than what could be explained by a possible dependence on magnetic local time or season, and the dependence on geomagnetic activity is weak and cannot be discerned. The solar cycle effect is not included because the database covers only a fraction of a solar cycle. The performance of the model is evaluated by comparison to four previously developed plasmaspheric models and is further tested against the in situ passive IMAGE RPI measurements of the upper hybrid resonance frequency. While the equatorial densities of different models are mostly within the statistical uncertainties (especially at distances greater than L = 3), the clear latitudinal dependence of the RPI model presents an improvement over previous models. The model shows that the field-aligned density distribution can be treated neither as constant nor as a simple diffusive equilibrium distribution profile. This electron density model combined with an assumed model of the ion composition can be used to estimate the time for an Alfven wave to propagate from one hemisphere to the other, to determine the plasma frequencies along a field line, and to calculate the raypaths for high frequency waves propagating in the plasmasphere.Citation: Ozhogin, P., J. Tu, P. Song, and B. W. Reinisch (2012), Field-aligned distribution of the plasmaspheric electron density: An empirical model derived from the IMAGE RPI measurements,
A plasma density model of the inner magnetosphere is important for a variety of applications including the study of wave‐particle interactions, and wave excitation and propagation. Previous empirical models have been developed under many limiting assumptions and do not resolve short‐term variations, which are especially important during storms. We present a three‐dimensional dynamic electron density (DEN3D) model developed using a feedforward neural network with electron densities obtained from four satellite missions. The DEN3D model takes spacecraft location and time series of solar and geomagnetic indices (F10.7, SYM‐H, and AL) as inputs. It can reproduce the observed density with a correlation coefficient of 0.95 and predict test data set with error less than a factor of 2. Its predictive ability on out‐of‐sample data is tested on field‐aligned density profiles from the IMAGE satellite. DEN3D's predictive ability provides unprecedented opportunities to gain insight into the 3‐D behavior of the inner magnetospheric plasma density at any time and location. As an example, we apply DEN3D to a storm that occurred on 1 June 2013. It successfully reproduces various well‐known dynamic features in three dimensions, such as plasmaspheric erosion and recovery, as well as plume formation. Storm time long‐term density variations are consistent with expectations; short‐term variations appear to be modulated by substorm activity or enhanced convection, an effect that requires further study together with multispacecraft in situ or imaging measurements. Investigating plasmaspheric refilling with the model, we find that it is not monotonic in time and is more complex than expected from previous studies, deserving further attention.
The diffusive equilibrium models that are widely used by the space physics community to describe the plasma densities in the plasmasphere are evaluated with field-aligned electron density measurements from the radio plasma imager (RPI) instrument onboard the IMAGE satellite. The original mathematical form of the diffusive equilibrium model was based on the hydrostatic equilibrium along the magnetic field line with the centrifugal force and the field-aligned electrostatic force as well as a large number of simplifying approximations. Six free parameters in the mathematical form have been conventionally determined from observations. We evaluate four sets of the parameters that have been reported in the literature. The evaluation is made according to the equatorial radial distance dependence, latitudinal dependence at a given radial distance, and the combined radial and latitudinal dependences. We find that the mathematical form given in the diffusive equilibrium model is intrinsically incompatible with the measurements unless another large number of free parameters are artificially introduced, which essentially changes the nature of a theoretical model to an empirical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.