This paper deals with the theory and application of Cellular Automata (CAI for a class of block ciphers and stream ciphers. Based on CA state transitions certain fundamental transformations are defined which are block ciphering functions of the proposed enciphering scheme. These fundamental transformations are found to generate the simple (alternating) group of even permutations which in turn is a subgroup of the permutation group. These functions are implemented with a class of programmable cellular automata (PCA) built around rules 51, 153, and 195. Further, high quality pseudorandom pattern generators built around rule 90 and 150 programmable cellular automata with a rule selector (Le., combining function) has been proposed as running key generators in stream ciphers. Both the schemes provide better security against different types of attacks. With a simple, regular, modular and cascadable structure of CA, hardware implementation of such schemes idealy suit for VLSI implementation.
This paper reports an efficient technique of evolving Cellular Automata (CA) as an associative memory model. The evolved CA termed as GMACA (Generalized Multiple Attractor Cellular Automata), acts as a powerful pattern recognizer. Detailed analysis of GMACA rules establishes the fact that the rule subspace of the pattern recognizing CA lies at the edge of chaos — believed to be capable of executing complex computation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.